QUANTUM COMPUTATION FOR ACTION SELECTION USING REINFORCEMENT LEARNING

2006 ◽  
Vol 04 (06) ◽  
pp. 1071-1083 ◽  
Author(s):  
C. L. CHEN ◽  
D. Y. DONG ◽  
Z. H. CHEN

This paper proposes a novel action selection method based on quantum computation and reinforcement learning (RL). Inspired by the advantages of quantum computation, the state/action in a RL system is represented with quantum superposition state. The probability of action eigenvalue is denoted by probability amplitude, which is updated according to rewards. And the action selection is carried out by observing quantum state according to collapse postulate of quantum measurement. The results of simulated experiments show that quantum computation can be effectively used to action selection and decision making through speeding up learning. This method also makes a good tradeoff between exploration and exploitation for RL using probability characteristics of quantum theory.

2020 ◽  
Vol 30 (6) ◽  
pp. 3573-3589 ◽  
Author(s):  
Rick A Adams ◽  
Michael Moutoussis ◽  
Matthew M Nour ◽  
Tarik Dahoun ◽  
Declan Lewis ◽  
...  

Abstract Choosing actions that result in advantageous outcomes is a fundamental function of nervous systems. All computational decision-making models contain a mechanism that controls the variability of (or confidence in) action selection, but its neural implementation is unclear—especially in humans. We investigated this mechanism using two influential decision-making frameworks: active inference (AI) and reinforcement learning (RL). In AI, the precision (inverse variance) of beliefs about policies controls action selection variability—similar to decision ‘noise’ parameters in RL—and is thought to be encoded by striatal dopamine signaling. We tested this hypothesis by administering a ‘go/no-go’ task to 75 healthy participants, and measuring striatal dopamine 2/3 receptor (D2/3R) availability in a subset (n = 25) using [11C]-(+)-PHNO positron emission tomography. In behavioral model comparison, RL performed best across the whole group but AI performed best in participants performing above chance levels. Limbic striatal D2/3R availability had linear relationships with AI policy precision (P = 0.029) as well as with RL irreducible decision ‘noise’ (P = 0.020), and this relationship with D2/3R availability was confirmed with a ‘decision stochasticity’ factor that aggregated across both models (P = 0.0006). These findings are consistent with occupancy of inhibitory striatal D2/3Rs decreasing the variability of action selection in humans.


2020 ◽  
Vol 11 ◽  
Author(s):  
Christian Balkenius ◽  
Trond A. Tjøstheim ◽  
Birger Johansson ◽  
Annika Wallin ◽  
Peter Gärdenfors

Reinforcement learning systems usually assume that a value function is defined over all states (or state-action pairs) that can immediately give the value of a particular state or action. These values are used by a selection mechanism to decide which action to take. In contrast, when humans and animals make decisions, they collect evidence for different alternatives over time and take action only when sufficient evidence has been accumulated. We have previously developed a model of memory processing that includes semantic, episodic and working memory in a comprehensive architecture. Here, we describe how this memory mechanism can support decision making when the alternatives cannot be evaluated based on immediate sensory information alone. Instead we first imagine, and then evaluate a possible future that will result from choosing one of the alternatives. Here we present an extended model that can be used as a model for decision making that depends on accumulating evidence over time, whether that information comes from the sequential attention to different sensory properties or from internal simulation of the consequences of making a particular choice. We show how the new model explains both simple immediate choices, choices that depend on multiple sensory factors and complicated selections between alternatives that require forward looking simulations based on episodic and semantic memory structures. In this framework, vicarious trial and error is explained as an internal simulation that accumulates evidence for a particular choice. We argue that a system like this forms the “missing link” between more traditional ideas of semantic and episodic memory, and the associative nature of reinforcement learning.


Information ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 341 ◽  
Author(s):  
Hu ◽  
Xu

Multi-Robot Confrontation on physics-based simulators is a complex and time-consuming task, but simulators are required to evaluate the performance of the advanced algorithms. Recently, a few advanced algorithms have been able to produce considerably complex levels in the context of the robot confrontation system when the agents are facing multiple opponents. Meanwhile, the current confrontation decision-making system suffers from difficulties in optimization and generalization. In this paper, a fuzzy reinforcement learning (RL) and the curriculum transfer learning are applied to the micromanagement for robot confrontation system. Firstly, an improved Qlearning in the semi-Markov decision-making process is designed to train the agent and an efficient RL model is defined to avoid the curse of dimensionality. Secondly, a multi-agent RL algorithm with parameter sharing is proposed to train the agents. We use a neural network with adaptive momentum acceleration as a function approximator to estimate the state-action function. Then, a method of fuzzy logic is used to regulate the learning rate of RL. Thirdly, a curriculum transfer learning method is used to extend the RL model to more difficult scenarios, which ensures the generalization of the decision-making system. The experimental results show that the proposed method is effective.


Author(s):  
Xiaoming Liu ◽  
Zhixiong Xu ◽  
Lei Cao ◽  
Xiliang Chen ◽  
Kai Kang

The balance between exploration and exploitation has always been a core challenge in reinforcement learning. This paper proposes “past-success exploration strategy combined with Softmax action selection”(PSE-Softmax) as an adaptive control method for taking advantage of the characteristics of the online learning process of the agent to adapt exploration parameters dynamically. The proposed strategy is tested on OpenAI Gym with discrete and continuous control tasks, and the experimental results show that PSE-Softmax strategy delivers better performance than deep reinforcement learning algorithms with basic exploration strategies.


2014 ◽  
Vol 24 (05) ◽  
pp. 1450002 ◽  
Author(s):  
JOHANNES FRIEDRICH ◽  
ROBERT URBANCZIK ◽  
WALTER SENN

Population coding is widely regarded as a key mechanism for achieving reliable behavioral decisions. We previously introduced reinforcement learning for population-based decision making by spiking neurons. Here we generalize population reinforcement learning to spike-based plasticity rules that take account of the postsynaptic neural code. We consider spike/no-spike, spike count and spike latency codes. The multi-valued and continuous-valued features in the postsynaptic code allow for a generalization of binary decision making to multi-valued decision making and continuous-valued action selection. We show that code-specific learning rules speed up learning both for the discrete classification and the continuous regression tasks. The suggested learning rules also speed up with increasing population size as opposed to standard reinforcement learning rules. Continuous action selection is further shown to explain realistic learning speeds in the Morris water maze. Finally, we introduce the concept of action perturbation as opposed to the classical weight- or node-perturbation as an exploration mechanism underlying reinforcement learning. Exploration in the action space greatly increases the speed of learning as compared to exploration in the neuron or weight space.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 227
Author(s):  
Gone Neelakantam ◽  
Djeane Debora Onthoni ◽  
Prasan Kumar Sahoo

Wastage of perishable and non-perishable products due to manual monitoring in shopping malls creates huge revenue loss in supermarket industry. Besides, internal and external factors such as calendar events and weather condition contribute to excess wastage of products in different regions of supermarket. It is a challenging job to know about the wastage of the products manually in different supermarkets region-wise. Therefore, the supermarket management needs to take appropriate decision and action to prevent the wastage of products. The fog computing data centers located in each region can collect, process and analyze data for demand prediction and decision making. In this paper, a product-demand prediction model is designed using integrated Principal Component Analysis (PCA) and K-means Unsupervised Learning (UL) algorithms and a decision making model is developed using State-Action-Reward-State-Action (SARSA) Reinforcement Learning (RL) algorithm. Our proposed method can cluster the products into low, medium, and high-demand product by learning from the designed features. Taking the derived cluster model, decision making for distributing low-demand to high-demand product can be made using SARSA. Experimental results show that our proposed method can cluster the datasets well with a Silhouette score of ≥60%. Besides, our adopted SARSA-based decision making model outperforms over Q-Learning, Monte-Carlo, Deep Q-Network (DQN), and Actor-Critic algorithms in terms of maximum cumulative reward, average cumulative reward and execution time.


2021 ◽  
Author(s):  
George Angelopoulos ◽  
Dimitris Metafas

Reinforcement Learning methods such as Q Learning, make use of action selection methods, in order to train an agent to perform a task. As the complexity of the task grows, so does the time required to train the agent. In this paper Q Learning is applied onto the board game Dominion, and Forced ε-greedy, an expansion to the ε-greedy action selection method is introduced. As shown in this paper the Forced ε-greedy method achieves to accelerate the training process and optimize its results, especially as the complexity of the task grows.


Author(s):  
Lidia K Simanjuntak ◽  
Tessa Y M Sihite ◽  
Mesran Mesran ◽  
Nuning Kurniasih ◽  
Yuhandri Yuhandri

All colleges each year organize the selection of new admissions. Acceptance of prospective students in universities as education providers is done by selecting prospective students based on achievement in school and college entrance selection. To select the best student candidates based on predetermined criteria, then use Multi-Criteria Decision Making (MCDM) or commonly called decision support system. One method in MCDM is the Elimination Et Choix Traduisant la Reality (ELECTRE). The ELECTRE method is the best method of action selection. The ELECTRE method to obtain the best alternative by eliminating alternative that do not fit the criteria and can be applied to the decision SNMPTN invitation path.


Sign in / Sign up

Export Citation Format

Share Document