scholarly journals Lightweight Failover Authentication Mechanism for IoT-Based Fog Computing Environment

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1417
Author(s):  
Soumya Banerjee ◽  
Ashok Kumar Das ◽  
Samiran Chattopadhyay ◽  
Sajjad Shaukat Jamal ◽  
Joel J. P. C. Rodrigues ◽  
...  

Fog computing as an extension to the cloud computing infrastructure has been invaluable in enhancing the applicability of the Internet of Things (IoT) paradigm. IoT based Fog systems magnify the range and minimize the latency of IoT applications. However, as fog nodes are considered transient and they offer authenticated services, when an IoT end device loses connectivity with a fog node, it must authenticate freshly with a secondary fog node. In this work, we present a new security mechanism to leverage the initial authentication to perform fast lightweight secondary authentication to ensure smooth failover among fog nodes. The proposed scheme is secure in the presence of a current de-facto Canetti and Krawczyk (CK)-adversary. We demonstrate the security of the proposed scheme with a detailed security analysis using formal security under the broadly recognized Real-Or-Random (ROR) model, informal security analysis as well as through formal security verification using the broadly-used Automated Validation of Internet Security Protocols and Applications (AVISPA) software tool. A testbed experiment for measuring computational time for different cryptographic primitives using the Multiprecision Integer and Rational Arithmetic Cryptographic Library (MIRACL) has been done. Finally, through comparative analysis with other related schemes, we show how the presented approach is uniquely advantageous over other schemes.

2022 ◽  
Vol 16 (1) ◽  
pp. 0-0

Secure and efficient authentication mechanism becomes a major concern in cloud computing due to the data sharing among cloud server and user through internet. This paper proposed an efficient Hashing, Encryption and Chebyshev HEC-based authentication in order to provide security among data communication. With the formal and the informal security analysis, it has been demonstrated that the proposed HEC-based authentication approach provides data security more efficiently in cloud. The proposed approach amplifies the security issues and ensures the privacy and data security to the cloud user. Moreover, the proposed HEC-based authentication approach makes the system more robust and secured and has been verified with multiple scenarios. However, the proposed authentication approach requires less computational time and memory than the existing authentication techniques. The performance revealed by the proposed HEC-based authentication approach is measured in terms of computation time and memory as 26ms, and 1878bytes for 100Kb data size, respectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-25 ◽  
Author(s):  
Madiha Khalid ◽  
Umar Mujahid ◽  
Najam-ul-Islam Muhammad

The field of pervasive computing especially the Internet of Things (IoT) network is evolving due to high network speed and increased capacity offered by the 5G communication system. The IoT network identifies each device before giving it access to the network. The RFID system is one of the most prominent enabling technologies for the node identification. Since the communication between the node and the network takes place over an insecure wireless channel, an authentication mechanism is required to avoid the malicious devices from entering the network. This paper presents a brief survey on the authentication protocols along with the prominent cryptanalysis models for the EPC C1G2 RFID systems. A comparative analysis is provided to highlight the common weaknesses of the existing authentication algorithms and to emphasize on the lack of security standardization for the resource constraint IoT network perception layer. This paper is concluded by proposing an ultralightweight protocol that provides Extremely Good Privacy (EGP). The proposed EGP protocol avoids all the pitfalls highlighted by the cryptanalysis of the existing authentication protocols. The incorporation of the novel ultralightweight primitives, Per-XOR (Px) and Inverse Per-XOR (Px-1), makes the protocol messages more robust and irreversible for all types of adversaries. A comprehensive security analysis illustrates that the proposed protocol proves to be highly resistive against all possible attack scenarios and ensures the security optimally.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Wajih El Hadj Youssef ◽  
Ali Abdelli ◽  
Fethi Dridi ◽  
Mohsen Machhout

The recent expansion of the Internet of Things is creating a new world of smart devices in which security implications are very significant. Besides the claimed security level, the IoT devices are usually featured with constrained resources, such as low computation capability, low memory, and limited battery. Lightweight cryptographic primitives are proposed in the context of IoT while considering the trade-off between security guarantee and good performance. In this paper, we present optimized hardware, lightweight cryptographic designs, of 32-bit datapath, LED 64/128, SIMON 64/128, and SIMECK 64/128 algorithms, for constrained devices. Our proposed designs are investigated on Spartan-3, Spartan-6, and Zynq-7000 FPGA platforms in terms of area, speed, efficiency, and power consumption. The proposed designs achieved a high throughput up to 891.99 Mbps, 838.95 Mbps, and 210.13 Mbps for SIMECK 64/128, SIMON 64/128, and LED 64/128 on Zynq-7000, respectively. A deep comparison between our three proposed designs is elaborated on different FPGA families for adequate FPGAs-based application deployment. Test results and security analysis show that not only can our proposed designs achieve good encryption results with high performance and a low reduced cost but also they are secure enough to resist statistical attacks.


Author(s):  
P. Jeyadurga ◽  
S. Ebenezer Juliet ◽  
I. Joshua Selwyn ◽  
P. Sivanisha

The Internet of things (IoT) is one of the emerging technologies that brought revolution in many application domains such as smart cities, smart retails, healthcare monitoring and so on. As the physical objects are connected via internet, security risk may arise. This paper analyses the existing technologies and protocols that are designed by different authors to ensure the secure communication over internet. It additionally focuses on the advancement in healthcare systems while deploying IoT services.


2017 ◽  
Vol 4 (5) ◽  
pp. 1113-1116 ◽  
Author(s):  
Rong N. Chang ◽  
Xiuzhen Cheng ◽  
Wei Cheng ◽  
Wonjun Lee ◽  
Yingshu Li ◽  
...  

Author(s):  
Tanweer Alam

In next-generation computing, the role of cloud, internet and smart devices will be capacious. Nowadays we all are familiar with the word smart. This word is used a number of times in our daily life. The Internet of Things (IoT) will produce remarkable different kinds of information from different resources. It can store big data in the cloud. The fog computing acts as an interface between cloud and IoT. The extension of fog in this framework works on physical things under IoT. The IoT devices are called fog nodes, they can have accessed anywhere within the range of the network. The blockchain is a novel approach to record the transactions in a sequence securely. Developing a new blockchains based middleware framework in the architecture of the Internet of Things is one of the critical issues of wireless networking where resolving such an issue would result in constant growth in the use and popularity of IoT. The proposed research creates a framework for providing the middleware framework in the internet of smart devices network for the internet of things using blockchains technology. Our main contribution links a new study that integrates blockchains to the Internet of things and provides communication security to the internet of smart devices.


2020 ◽  
Author(s):  
Tanweer Alam

<p>The fog computing is the emerging technology to compute, store, control and connecting smart devices with each other using cloud computing. The Internet of Things (IoT) is an architecture of uniquely identified interrelated physical things, these physical things are able to communicate with each other and can transmit and receive information. <a>This research presents a framework of the combination of the Internet of Things (IoT) and Fog computing. The blockchain is also the emerging technology that provides a hyper, distributed, public, authentic ledger to record the transactions. Blockchains technology is a secured technology that can be a boon for the next generation computing. The combination of fog, blockchains, and IoT creates a new opportunity in this area. In this research, the author presents a middleware framework based on the blockchain, fog, and IoT. The framework is implemented and tested. The results are found positive. </a></p>


Author(s):  
Kundankumar Rameshwar Saraf ◽  
Malathi P. Jesudason

This chapter explores the encryption techniques used for the internet of things (IoT). The security algorithm used for IoT should follow many constraints of an embedded system. Hence, lightweight cryptography is an optimum security solution for IoT devices. This chapter mainly describes the need for security in IoT, the concept of lightweight cryptography, and various cryptographic algorithms along with their shortcomings given IoT. This chapter also describes the principle of operation of all the above algorithms along with their security analysis. Moreover, based on the algorithm size (i.e., the required number of gate equivalent, block size, key size, throughput, and execution speed of the algorithm), the chapter reports the comparative analysis of their performance. The chapter discusses the merits and demerits of these algorithms along with their use in the IoT system.


Sign in / Sign up

Export Citation Format

Share Document