scholarly journals Ultralightweight RFID Authentication Protocols for Low-Cost Passive RFID Tags

2019 ◽  
Vol 2019 ◽  
pp. 1-25 ◽  
Author(s):  
Madiha Khalid ◽  
Umar Mujahid ◽  
Najam-ul-Islam Muhammad

The field of pervasive computing especially the Internet of Things (IoT) network is evolving due to high network speed and increased capacity offered by the 5G communication system. The IoT network identifies each device before giving it access to the network. The RFID system is one of the most prominent enabling technologies for the node identification. Since the communication between the node and the network takes place over an insecure wireless channel, an authentication mechanism is required to avoid the malicious devices from entering the network. This paper presents a brief survey on the authentication protocols along with the prominent cryptanalysis models for the EPC C1G2 RFID systems. A comparative analysis is provided to highlight the common weaknesses of the existing authentication algorithms and to emphasize on the lack of security standardization for the resource constraint IoT network perception layer. This paper is concluded by proposing an ultralightweight protocol that provides Extremely Good Privacy (EGP). The proposed EGP protocol avoids all the pitfalls highlighted by the cryptanalysis of the existing authentication protocols. The incorporation of the novel ultralightweight primitives, Per-XOR (Px) and Inverse Per-XOR (Px-1), makes the protocol messages more robust and irreversible for all types of adversaries. A comprehensive security analysis illustrates that the proposed protocol proves to be highly resistive against all possible attack scenarios and ensures the security optimally.

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1417
Author(s):  
Soumya Banerjee ◽  
Ashok Kumar Das ◽  
Samiran Chattopadhyay ◽  
Sajjad Shaukat Jamal ◽  
Joel J. P. C. Rodrigues ◽  
...  

Fog computing as an extension to the cloud computing infrastructure has been invaluable in enhancing the applicability of the Internet of Things (IoT) paradigm. IoT based Fog systems magnify the range and minimize the latency of IoT applications. However, as fog nodes are considered transient and they offer authenticated services, when an IoT end device loses connectivity with a fog node, it must authenticate freshly with a secondary fog node. In this work, we present a new security mechanism to leverage the initial authentication to perform fast lightweight secondary authentication to ensure smooth failover among fog nodes. The proposed scheme is secure in the presence of a current de-facto Canetti and Krawczyk (CK)-adversary. We demonstrate the security of the proposed scheme with a detailed security analysis using formal security under the broadly recognized Real-Or-Random (ROR) model, informal security analysis as well as through formal security verification using the broadly-used Automated Validation of Internet Security Protocols and Applications (AVISPA) software tool. A testbed experiment for measuring computational time for different cryptographic primitives using the Multiprecision Integer and Rational Arithmetic Cryptographic Library (MIRACL) has been done. Finally, through comparative analysis with other related schemes, we show how the presented approach is uniquely advantageous over other schemes.


2022 ◽  
Vol 18 (1) ◽  
pp. 1-23
Author(s):  
Mahabub Hasan Mahalat ◽  
Dipankar Karmakar ◽  
Anindan Mondal ◽  
Bibhash Sen

The deployment of wireless sensor networks (WSN) in an untended environment and the openness of the wireless channel bring various security threats to WSN. The resource limitations of the sensor nodes make the conventional security systems less attractive for WSN. Moreover, conventional cryptography alone cannot ensure the desired security against the physical attacks on sensor nodes. Physically unclonable function (PUF) is an emerging hardware security primitive that provides low-cost hardware security exploiting the unique inherent randomness of a device. In this article, we have proposed an authentication and key sharing scheme for the WSN integrating Pedersen’s verifiable secret sharing (Pedersen’s VSS) and Shamir’s secret sharing (Shamir’s SS) scheme with PUF which ensure the desired security with low overhead. The security analysis depicts the resilience of the proposed scheme against different active, passive and physical attacks. Also, the performance analysis shows that the proposed scheme possesses low computation, communication and storage overhead. The scheme only needs to store a polynomial number of PUF challenge-response pairs to the user node. The sink or senor nodes do not require storing any secret key. Finally, the comparison with the previous protocols establishes the dominance of the proposed scheme to use in WSN.


2019 ◽  
Vol 8 (3) ◽  
pp. 6736-6743

WSN include Internet Protocol (IP) which extends the Internet of Things (IoT) related to routine life. Security is main thing in emerging technology for IOT application. Therefore, WSN has lot of issues which include: (i) To promote the sensor devices efficiently during the transmission of data for consuming low energy (ii) To resolve the security issues of data faced at the time of transmission through large area of networks. In this paper, to overcome the above issues the novel scheme is proposed. A Secure based smart home automation system in IOT application is built for this study. Furthermore, the data transmission utilizes the energy using Low power consumption protocol using RPLS and to secure the data a data security scheme ECPABE have been proposed here. The performance of proposed protocol shows the limited energy consumes and proposed ECPABE provides better security level to IoT data than the existing schemes. The results show the proposed scheme security analysis is efficient as well as secure


Author(s):  
Ashish Joshi ◽  
Amar Kumar Mohapatra

Background & Objective: Cryptographic protocols had been evident method for ensuring con dentiality, Integrity and authentication in various digital communication systems. However the validation and analysis of such cryptographic protocols was limited to usage of formal mathematical models until few years back. Methods: In this paper, various popular cryptographic protocols have been studied. Some of these protocols (PAP, CHAP, and EAP) achieve security goals in peer to peer communication while others (RADIUS, DIAMETER and Kerberos) can work in multiparty environment. These protocols were validated and analysed over two popular security validation and analysis tools AVISPA and Scyther. The protocols were written according to their documentation using the HLPSL and SPDL for analysis over AVISPA and Scyther respectively. The results of these tools were analysed to nd the possible attack an each protocol. Afterwards The execution time analysis of the protocols were done by repeating the experiment for multiple iterations over the command line versions of these tools.As the literature review suggested, this research also validates that using password based protocols (PAP) is faster in terms of execution time as compared to other methods, Usage of nonces tackles the replay attack and DIAMETER is secure than RADIUS. Results and Conclusion: The results also showed us that DIAMETER is faster than RADIUS. Though Kerberos protocol was found to safe, the results tell us that it is compromisable under particular circumstances.


IoT ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 140-162
Author(s):  
Hung Nguyen-An ◽  
Thomas Silverston ◽  
Taku Yamazaki ◽  
Takumi Miyoshi

We now use the Internet of things (IoT) in our everyday lives. The novel IoT devices collect cyber–physical data and provide information on the environment. Hence, IoT traffic will count for a major part of Internet traffic; however, its impact on the network is still widely unknown. IoT devices are prone to cyberattacks because of constrained resources or misconfigurations. It is essential to characterize IoT traffic and identify each device to monitor the IoT network and discriminate among legitimate and anomalous IoT traffic. In this study, we deployed a smart-home testbed comprising several IoT devices to study IoT traffic. We performed extensive measurement experiments using a novel IoT traffic generator tool called IoTTGen. This tool can generate traffic from multiple devices, emulating large-scale scenarios with different devices under different network conditions. We analyzed the IoT traffic properties by computing the entropy value of traffic parameters and visually observing the traffic on behavior shape graphs. We propose a new method for identifying traffic entropy-based devices, computing the entropy values of traffic features. The method relies on machine learning to classify the traffic. The proposed method succeeded in identifying devices with a performance accuracy up to 94% and is robust with unpredictable network behavior with traffic anomalies spreading in the network.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yehe Liu ◽  
Andrew M. Rollins ◽  
Richard M. Levenson ◽  
Farzad Fereidouni ◽  
Michael W. Jenkins

AbstractSmartphone microscopes can be useful tools for a broad range of imaging applications. This manuscript demonstrates the first practical implementation of Microscopy with Ultraviolet Surface Excitation (MUSE) in a compact smartphone microscope called Pocket MUSE, resulting in a remarkably effective design. Fabricated with parts from consumer electronics that are readily available at low cost, the small optical module attaches directly over the rear lens in a smartphone. It enables high-quality multichannel fluorescence microscopy with submicron resolution over a 10× equivalent field of view. In addition to the novel optical configuration, Pocket MUSE is compatible with a series of simple, portable, and user-friendly sample preparation strategies that can be directly implemented for various microscopy applications for point-of-care diagnostics, at-home health monitoring, plant biology, STEM education, environmental studies, etc.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3950
Author(s):  
Hoora Mazaheri ◽  
Hwai Chyuan Ong ◽  
Zeynab Amini ◽  
Haji Hassan Masjuki ◽  
M. Mofijur ◽  
...  

Biodiesel is a clean, renewable, liquid fuel that can be used in existing diesel engines without modification as pure or blend. Transesterification (the primary process for biodiesel generation) via heterogeneous catalysis using low-cost waste feedstocks for catalyst synthesis improves the economics of biodiesel production. Heterogeneous catalysts are preferred for the industrial generation of biodiesel due to their robustness and low costs due to the easy separation and relatively higher reusability. Calcium oxides found in abundance in nature, e.g., in seashells and eggshells, are promising candidates for the synthesis of heterogeneous catalysts. However, process improvements are required to design productive calcium oxide-based catalysts at an industrial scale. The current work presents an overview of the biodiesel production advancements using calcium oxide-based catalysts (e.g., pure, supported, and mixed with metal oxides). The review discusses different factors involved in the synthesis of calcium oxide-based catalysts, and the effect of reaction parameters on the biodiesel yield of calcium oxide-based catalysis are studied. Further, the common reactor designs used for the heterogeneous catalysis using calcium oxide-based catalysts are explained. Moreover, the catalytic activity mechanism, challenges and prospects of the application of calcium oxide-based catalysts in biodiesel generation are discussed. The study of calcium oxide-based catalyst should continue to be evaluated for the potential of their application in the commercial sector as they remain the pivotal goal of these studies.


2020 ◽  
Vol 9 (2) ◽  
pp. 136-138 ◽  
Author(s):  
Md. Siddikur Rahman ◽  
Noah C. Peeri ◽  
Nistha Shrestha ◽  
Rafdzah Zaki ◽  
Ubydul Haque ◽  
...  

NANO ◽  
2018 ◽  
Vol 13 (05) ◽  
pp. 1850052
Author(s):  
Yuanyuan Zhou ◽  
Jianying Deng ◽  
Shimei Li ◽  
Zefeng Li

Core–shell Cu@Ni chains were successfully synthesized through a mild hydrothermal reaction. The morphology, structure and microwave electromagnetic properties of the composite were then characterized by X-ray diffraction, energy-dispersive spectroscopy, scanning electron microscopy and vector network analysis. The formation mechanisms of the core–shell structure and one-dimensional chains were ascribed to the varying redox potentials of Cu and Ni ions and the magnetic dipole–dipole attraction. Furthermore, a minimal reflection loss (RL) of [Formula: see text]20.7[Formula: see text]dB was observed at 9.6[Formula: see text]GHz with a thickness of 2.0[Formula: see text]mm and the effective absorption ([Formula: see text]10[Formula: see text]dB, 90% microwave attenuation) bandwidth can be adjusted between 5.2[Formula: see text]GHz and 16.6[Formula: see text]GHz for the thin absorber thickness of 2.0–4.0[Formula: see text]mm. The novel core–shell chain-like Cu@Ni alloy can be used as a promising absorbing material because it shows numerous features such as thin thickness, strong absorption, low cost and lightweight.


Author(s):  
Lee-Huang Chen ◽  
Kyunam Kim ◽  
Ellande Tang ◽  
Kevin Li ◽  
Richard House ◽  
...  

This paper presents the design, analysis and testing of a fully actuated modular spherical tensegrity robot for co-robotic and space exploration applications. Robots built from tensegrity structures (composed of pure tensile and compression elements) have many potential benefits including high robustness through redundancy, many degrees of freedom in movement and flexible design. However to fully take advantage of these properties a significant fraction of the tensile elements should be active, leading to a potential increase in complexity, messy cable and power routing systems and increased design difficulty. Here we describe an elegant solution to a fully actuated tensegrity robot: The TT-3 (version 3) tensegrity robot, developed at UC Berkeley, in collaboration with NASA Ames, is a lightweight, low cost, modular, and rapidly prototyped spherical tensegrity robot. This robot is based on a ball-shaped six-bar tensegrity structure and features a unique modular rod-centered distributed actuation and control architecture. This paper presents the novel mechanism design, architecture and simulations of TT-3, the first untethered, fully actuated cable-driven six-bar tensegrity spherical robot ever built and tested for mobility. Furthermore, this paper discusses the controls and preliminary testing performed to observe the system’s behavior and performance.


Sign in / Sign up

Export Citation Format

Share Document