scholarly journals UWB Dual-Band-Notched Lanky-Leaf-Shaped Antenna with Loaded Half-Square-Like Slots for Communication System

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1991
Author(s):  
Xue-Ping Li ◽  
Gang Xu ◽  
Ming-Rong Ma ◽  
Chang-Jiao Duan

A novel printed compact single-layer dual-band-notched antenna for the use of ultra-wide band (UWB) is proposed in this paper, and one lanky-leaf-like structure with a coplanar waveguide (CPW) feed is designed as the radiated element for a large operating bandwidth. To realize the dual-band-notched characteristics of microwave access (WiMAX) and wireless local area networks (WLAN), two half-square-like slots are etched on the metallic surface. The fabricated prototype of this proposed antenna has a compact size of 27 × 32 mm2 and operates at 2.8 GHz to 10 GHz, excepting for rejection bands at 3.06–3.83 GHz and 5.05–5.96 GHz. Nearly omnidirectional radiation patterns are obtained in the working band. Furthermore, one conformal design on cylinder and transfer characteristics are made to validate its potential application. These findings indicate that this antenna can be taken as a promising option for use in the UWB communication field.

2019 ◽  
Vol 11 (4) ◽  
pp. 351-358 ◽  
Author(s):  
Priyanka Garg ◽  
Priyanka Jain

AbstractIn this paper, a compact, low-profile, coplanar waveguide-fed metamaterial inspired dual-band microstrip antenna is presented for Wireless Local Area Network (WLAN) application. To achieve the goal a triangular split ring resonator is used along with an open-ended stub. The proposed antenna has a compact size of 20 × 24 mm2 fabricated on an FR-4 epoxy substrate with dielectric constant (εr) 4.4. The antenna provides two distinct bands I from 2.40 to 2.48 GHz and II from 4.7 to 6.04 GHz with reflection coefficient better than −10 dB, covering the entire WLAN (2.4/5.2/5.8 GHz) band spectrum. The performance of the proposed metamaterial inspired antenna is also studied in terms of the radiation pattern, efficiency, and the realized gain. A comparative study is also presented to show the performance of the proposed metamaterial inspired antenna with respect to other conventional antenna structures in terms of overall size, bandwidth, gain, and reflection coefficient. Finally, the antenna is fabricated and tested. The simulated results show good agreement with the measured results.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sangjin Jo ◽  
Hyunjin Choi ◽  
Beomsoo Shin ◽  
Sangyeol Oh ◽  
Jaehoon Lee

We present a simple coplanar waveguide- (CPW-) fed rectangular ring monopole antenna designed for dual-band wireless local area network (WLAN) applications. The antenna is based on a simple structure composed of a CPW feed line and a rectangular ring. Dual-band WLAN operation can be achieved by controlling the distance between the rectangular ring and the ground plane of the CPW feed line, as well as the horizontal vertical lengths of the rectangular ring. Simulated and measured data show that the antenna has a compact size of21.4×59.4 mm2, an impedance bandwidths of 2.21–2.70 GHz and 5.04–6.03 GHz, and a reflection coefficient of less than −10 dB. The antenna also exhibits an almost omnidirectional radiation pattern. This simple compact antenna with favorable frequency characteristics therefore is attractive for applications in dual-band WLAN.


2000 ◽  
Vol 10 (04) ◽  
pp. 695-718 ◽  
Author(s):  
MICHAEL PETER KENNEDY ◽  
GÉZA KOLUMBÁN ◽  
GÁBOR KIS

This tutorial work identifies the characteristic properties of chaotic digital modulation schemes and shows how the unique features of chaotic basis functions can be exploited to competitive advantage in selected application domains. Two robust noncoherent chaotic digital modulation schemes (DCSK and FM-DCSK) are described in detail and the performance of FM-DCSK is examined critically for communication channels where systems using conventional coherent and narrow-band modulation schemes fail. Since the FM-DCSK signal is a wide-band signal and its demodulation is performed without synchronization, the FM-DCSK modulation scheme is especially suitable for operation in multipath channel such as Wireless Local Area Networks (WLANs).


2009 ◽  
Vol 51 (9) ◽  
pp. 2034-2038 ◽  
Author(s):  
Johanna M. Steyn ◽  
Johann W. Odendaal ◽  
Johan Joubert

2013 ◽  
Vol 846-847 ◽  
pp. 521-525
Author(s):  
Zheng Lin Zhou ◽  
Ming Li

A compact coplanar waveguide fed UWB (ultra-wideband) antenna with triple band-notched characteristics is presented. The rectangle radiation patch is used in the new design, and the bandwidth of the UWB antenna is extended by using circle corner for the rectangle cut from the ground. A parasitic element is added, whereas an inverted U-shaped slot is cut on the top of the CPW ground plane and a U-shaped slot is cut on the rectangle radiation patch. As a result, a triple band-notched characteristic is obtained, by which the potential interference between UWB and WLAN (Wireless Local Area Networks), C-band and X-band systems can be effectively reduced.


2016 ◽  
Vol 9 (4) ◽  
pp. 851-857 ◽  
Author(s):  
Abdelati Reha ◽  
Abdelkebir El Amri ◽  
Othmane Benhmammouch ◽  
Ahmed Oulad Said ◽  
Abdelhakim El Ouadih ◽  
...  

This paper presents the behavior of three iterations of a coplanar waveguide fed CANTOR Set fractal antenna. This kind of antennas allows having a broadband behavior and important gains. Also, the setup of slots allows having more lower resonant frequencies and therefore designing miniaturized antennas with good performances. The proposed antennas are suitable for 2.5/3.3/5/5.5 GHz worldwide interoperability for microwave access and for 2.4–2.5/4.9–5.9 GHz wireless local area networks applications. The simulations were performed in FEKO 6.3. The measurements were performed with Vector Network Analyzer HP 8719C.


Author(s):  
Chaithra. H. U ◽  
Vani H.R

Now a days in Wireless Local Area Networks (WLANs) used in different fields because its well-suited simulator and higher flexibility. The concept of WLAN  with  advanced 5th Generation technologies, related to a Internet-of-Thing (IOT). In this project, representing the Network Simulator (NS-2) used linked-level simulators for Wireless Local Area Networks and still utilized IEEE 802.11g/n/ac with advanced IEEE 802.11ah/af technology. Realization of the whole Wireless Local Area Networking linked-level simulators inspired by the recognized Vienna Long Term Evolution- simulators. As a outcome, this is achieved to link together that simulator to detailed performances of Wireless Local Area Networking with Long Term Evolution, operated in the similar RF bands. From the advanced 5th Generation support cellular networking, such explore is main because different coexistences scenario can arise linking wireless communicating system to the ISM and UHF bands.


Sign in / Sign up

Export Citation Format

Share Document