scholarly journals CCSDS 131.2-B-1 Transmitter Design on FPGA with Adaptive Coding and Modulation Schemes for Satellite Communications

Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2476
Author(s):  
Adrián Lamoral Coines ◽  
Víctor P. Gil Jiménez

Satellite communications are a well-established research area in which the main innovation of last decade has been the use of multi-carrier modulations and more robust channel coding techniques. However, in recent years, novel advanced signal processing has started being developed for these communications due to the increase in the signal processing capacity of transmitters and receivers. Although signal processing capabilities are increasing, they are still constrained by large limitations because these techniques need to be implemented in real hardware, thus making complexity a matter of critical importance. Therefore, this paper presents the design and implementation of a transmitter with adaptable coding and modulation on a field-programmable-gate-array (FPGA). The main motivation came from the standard CCSDS 131.2-B-1 which recommends that such a novel transmitter which has to date not been implemented in a real system The system was modeled by MATLAB with the purpose of being programmed in VHDL following the AXI-stream protocol between components. Behavioral simulation results were obtained in VIVADO and compared with MATLAB for verification purposes. The transmitter logical circuit was synthesized in a FPGA Zynq Ultrascale RFSoC ZU28DR, showing low resource consumption and correct functioning, leading us to conclude that the deployment of new communication systems in state-of-the-art hardware in satellite communications is justified.

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2989
Author(s):  
Peng Liu ◽  
Yan Song

Vision processing chips have been widely used in image processing and recognition tasks. They are conventionally designed based on the image signal processing (ISP) units directly connected with the sensors. In recent years, convolutional neural networks (CNNs) have become the dominant tools for many state-of-the-art vision processing tasks. However, CNNs cannot be processed by a conventional vision processing unit (VPU) with a high speed. On the other side, the CNN processing units cannot process the RAW images from the sensors directly and an ISP unit is required. This makes a vision system inefficient with a lot of data transmission and redundant hardware resources. Additionally, many CNN processing units suffer from a low flexibility for various CNN operations. To solve this problem, this paper proposed an efficient vision processing unit based on a hybrid processing elements array for both CNN accelerating and ISP. Resources are highly shared in this VPU, and a pipelined workflow is introduced to accelerate the vision tasks. We implement the proposed VPU on the Field-Programmable Gate Array (FPGA) platform and various vision tasks are tested on it. The results show that this VPU achieves a high efficiency for both CNN processing and ISP and shows a significant reduction in energy consumption for vision tasks consisting of CNNs and ISP. For various CNN tasks, it maintains an average multiply accumulator utilization of over 94% and achieves a performance of 163.2 GOPS with a frequency of 200 MHz.


2020 ◽  
Author(s):  
Hadi Sarieddeen ◽  
Mohamed-Slim Alouini ◽  
Tareq Y. Al-Naffouri

Terahertz (THz)-band communications are a key enabler for future-generation wireless communication systems that promise to integrate a wide range of data-demanding applications. Recent advancements in photonic, electronic, and plasmonic technologies are closing the gap in THz transceiver design. Consequently, prospect THz signal generation, modulation, and radiation methods are converging, and the corresponding channel model, noise, and hardware-impairment notions are emerging. Such progress paves the way for well-grounded research into THz-specific signal processing techniques for wireless communications. This tutorial overviews these techniques with an emphasis on ultra-massive multiple-input multiple-output (UM-MIMO) systems and reconfigurable intelligent surfaces, which are vital to overcoming the distance problem at very high frequencies. We focus on the classical problems of waveform design and modulation, beamforming and precoding, index modulation, channel estimation, channel coding, and data detection. We also motivate signal processing techniques for THz sensing and localization.


2020 ◽  
Author(s):  
Hadi Sarieddeen ◽  
Mohamed-Slim Alouini ◽  
Tareq Y. Al-Naffouri

Terahertz (THz)-band communications are a key enabler for future-generation wireless communication systems that promise to integrate a wide range of data-demanding applications. Recent advancements in photonic, electronic, and plasmonic technologies are closing the gap in THz transceiver design. Consequently, prospect THz signal generation, modulation, and radiation methods are converging, and the corresponding channel model, noise, and hardware-impairment notions are emerging. Such progress paves the way for well-grounded research into THz-specific signal processing techniques for wireless communications. This tutorial overviews these techniques with an emphasis on ultra-massive multiple-input multiple-output (UM-MIMO) systems and reconfigurable intelligent surfaces, which are vital to overcoming the distance problem at very high frequencies. We focus on the classical problems of waveform design and modulation, beamforming and precoding, index modulation, channel estimation, channel coding, and data detection. We also motivate signal processing techniques for THz sensing and localization.


Author(s):  
Teodor Narytnik ◽  
Vladimir Saiko

The technical aspects of the main promising projects in the segments of medium and low-orbit satellite communication systems are considered, as well as the project of the domestic low-orbit information and telecommunications system using the terahertz range, which is based on the use of satellite platforms of the micro- and nanosatellite class and the distribution of functional blocks of complex satellite payloads more high-end on multiple functionally related satellites. The proposed system of low-orbit satellite communications represents the groupings of low-orbit spacecraft (LEO-system) with the architecture of a "distributed satellite", which include the groupings of the root (leading) satellites and satellite repeaters (slaves). Root satellites are interconnected in a ring network by high-speed links between the satellites. The geometric size of the “distributed satellite” is the area around the root satellite with a radius of about 1 km. The combination of beams, which are formed by the repeater satellites, make up the service area of the LEO system. The requirements for the integrated service area of the LEO system (geographical service area) determine the requirements for the number of distributed satellites in the system as a whole. In the proposed system to reduce mutual interference between the grouping of the root (leading) satellites and repeater satellites (slaves) and, accordingly, minimizing distortions of the information signal when implementing inter-satellite communication, this line (radio channel) was created in an unlicensed frequency (e.g., in the terahertz 140 GHz) range. In addition, it additionally allows you to minimize the size of the antennas of such a broadband channel and simplify the operation of these satellite systems.


Sign in / Sign up

Export Citation Format

Share Document