scholarly journals 3D Face Recognition Based on an Attention Mechanism and Sparse Loss Function

Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2539
Author(s):  
Hongyan Zou ◽  
Xinyan Sun

Face recognition is one of the essential applications in computer vision, while current face recognition technology is mainly based on 2D images without depth information, which are easily affected by illumination and facial expressions. This paper presents a fast face recognition algorithm combining 3D point cloud face data with deep learning, focusing on key part of face for recognition with an attention mechanism, and reducing the coding space by the sparse loss function. First, an attention mechanism-based convolutional neural network was constructed to extract facial features to avoid expressions and illumination interference. Second, a Siamese network was trained with a sparse loss function to minimize the face coding space and enhance the separability of the face features. With the FRGC face dataset, the experimental results show that the proposed method could achieve the recognition accuracy of 95.33%.

Author(s):  
João Baptista Cardia ◽  
Aparecido Nilceu Marana

Many situations of our everyday life require our identification. Biometrics-based methods, besides allowing such identification, can help to prevent frauds. Among several biometrics features, face is one of the most popular due to its intrinsic and important properties, such as universality, acceptability, lowcosts, and covert identification. On the other hand, the traditional automatic face recognition methods based on 2D features can not properly deal with some very frequent challenges, such as occlusion, illumination and pose variations. In this paper we propose a new method for face recognition based on the fusion of 3D low-level local features, ACDN+P and 3DLBP, using depth images captured by cheap Kinect V1 sensors. In order to improve the low quality of the point cloud provided by such devices, Symmetric Filling, Iterative Closest Point, and Savitzky-Golay Filter are used in the preprocessing stage of the proposed method. Experimental results obtained on EURECOM Kinect dataset showed that the proposed method can improve the face recognition rates.


Author(s):  
Tang-Tang Yi ◽  

In order to solve the problem of low recognition accuracy in recognition of 3D face images collected by traditional sensors, a face recognition algorithm for 3D point cloud collected by mixed image sensors is proposed. The algorithm first uses the 3D wheelbase to expand the face image edge. According to the 3D wheelbase, the noise of extended image is detected, and median filtering is used to eliminate the detected noise. Secondly, the priority of the boundary pixels to recognize the face image in the denoising image recognition process is determined, and the key parts such as the illuminance line are analyzed, so that the recognition of the 3D point cloud face image is completed. Experiments show that the proposed algorithm improves the recognition accuracy of 3D face images, which recognition time is lower than that of the traditional algorithm by about 4 times, and the recognition efficiency is high.


Author(s):  
Yuxiang Long

Face recognition is difficult due to the higher dimension of face image features and fewer training samples. Firstly, in order to improve the performance of feature extraction, we inventively construct a double hierarchical network structure convolution neural network (CNN) model. The front-end network adopts a relatively simple network model to achieve rough feature extraction from input images and obtain multiple suspect face candidate windows. The back-end network uses a relatively complex network model to filter the best detection window and return the face size and position by nonmaximum suppression. Then, in order to fully extract the face features in the optimal window, a face recognition algorithm based on intermediate layers connected by the deep CNN is proposed in this paper. Based on AlexNet, the front, intermediate and end convolution layers are combined by deep connection. Then, the feature vector describing the face image is obtained by the operation of the pooling layer and the full connection layer. Finally, the auxiliary classifier training method is used to train the model to ensure the effectiveness of the features of the intermediate layer. Experimental results based on open face database show that the recognition accuracy of the proposed algorithm is higher than that of other face recognition algorithms compared in this paper.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
GuiLing Wu

A contactless delivery cabinet is an important courier self-pickup device, for the reason that COVID-19 can be transmitted by human contact. During the pandemic period of COVID-19, wearing a mask to take delivery is a common application scenario, which makes the study of masked face recognition algorithm greatly significant. A masked face recognition algorithm based on attention mechanism is proposed in this paper in order to improve the recognition rate of masked face images. First, the masked face image is separated by the local constrained dictionary learning method, and the face image part is separated. Then, the dilated convolution is used to reduce the resolution reduction in the subsampling process. Finally, according to the important feature information of the face image, the attention mechanism neural network is used to reduce the information loss in the subsampling process and improve the face recognition rate. In the experimental part, the RMFRD and SMFRD databases of Wuhan University were selected to compare the recognition rate. The experimental results show that the proposed algorithm has a better recognition rate.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Naeem Ratyal ◽  
Imtiaz Ahmad Taj ◽  
Muhammad Sajid ◽  
Anzar Mahmood ◽  
Sohail Razzaq ◽  
...  

Face recognition aims to establish the identity of a person based on facial characteristics and is a challenging problem due to complex nature of the facial manifold. A wide range of face recognition applications are based on classification techniques and a class label is assigned to the test image that belongs to the unknown class. In this paper, a pose invariant deeply learned multiview 3D face recognition approach is proposed and aims to address two problems: face alignment and face recognition through identification and verification setups. The proposed alignment algorithm is capable of handling frontal as well as profile face images. It employs a nose tip heuristic based pose learning approach to estimate acquisition pose of the face followed by coarse to fine nose tip alignment using L2 norm minimization. The whole face is then aligned through transformation using knowledge learned from nose tip alignment. Inspired by the intrinsic facial symmetry of the Left Half Face (LHF) and Right Half Face (RHF), Deeply learned (d) Multi-View Average Half Face (d-MVAHF) features are employed for face identification using deep convolutional neural network (dCNN). For face verification d-MVAHF-Support Vector Machine (d-MVAHF-SVM) approach is employed. The performance of the proposed methodology is demonstrated through extensive experiments performed on four databases: GavabDB, Bosphorus, UMB-DB, and FRGC v2.0. The results show that the proposed approach yields superior performance as compared to existing state-of-the-art methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Zhe-Zhou Yu ◽  
Yu-Hao Liu ◽  
Bin Li ◽  
Shu-Chao Pang ◽  
Cheng-Cheng Jia

In a real world application, we seldom get all images at one time. Considering this case, if a company hired an employee, all his images information needs to be recorded into the system; if we rerun the face recognition algorithm, it will be time consuming. To address this problem, In this paper, firstly, we proposed a novel subspace incremental method called incremental graph regularized nonnegative matrix factorization (IGNMF) algorithm which imposes manifold into incremental nonnegative matrix factorization algorithm (INMF); thus, our new algorithm is able to preserve the geometric structure in the data under incremental study framework; secondly, considering we always get many face images belonging to one person or many different people as a batch, we improved our IGNMF algorithms to Batch-IGNMF algorithms (B-IGNMF), which implements incremental study in batches. Experiments show that (1) the recognition rate of our IGNMF and B-IGNMF algorithms is close to GNMF algorithm while it runs faster than GNMF. (2) The running times of our IGNMF and B-IGNMF algorithms are close to INMF while the recognition rate outperforms INMF. (3) Comparing with other popular NMF-based face recognition incremental algorithms, our IGNMF and B-IGNMF also outperform then both the recognition rate and the running time.


2018 ◽  
Vol 9 (1) ◽  
pp. 60-77 ◽  
Author(s):  
Souhir Sghaier ◽  
Wajdi Farhat ◽  
Chokri Souani

This manuscript presents an improved system research that can detect and recognize the person in 3D space automatically and without the interaction of the people's faces. This system is based not only on a quantum computation and measurements to extract the vector features in the phase of characterization but also on learning algorithm (using SVM) to classify and recognize the person. This research presents an improved technique for automatic 3D face recognition using anthropometric proportions and measurement to detect and extract the area of interest which is unaffected by facial expression. This approach is able to treat incomplete and noisy images and reject the non-facial areas automatically. Moreover, it can deal with the presence of holes in the meshed and textured 3D image. It is also stable against small translation and rotation of the face. All the experimental tests have been done with two 3D face datasets FRAV 3D and GAVAB. Therefore, the test's results of the proposed approach are promising because they showed that it is competitive comparable to similar approaches in terms of accuracy, robustness, and flexibility. It achieves a high recognition performance rate of 95.35% for faces with neutral and non-neutral expressions for the identification and 98.36% for the authentification with GAVAB and 100% with some gallery of FRAV 3D datasets.


Author(s):  
M. Parisa Beham ◽  
S. M. Mansoor Roomi ◽  
J. Alageshan ◽  
V. Kapileshwaran

Face recognition and authentication are two significant and dynamic research issues in computer vision applications. There are many factors that should be accounted for face recognition; among them pose variation is a major challenge which severely influence in the performance of face recognition. In order to improve the performance, several research methods have been developed to perform the face recognition process with pose invariant conditions in constrained and unconstrained environments. In this paper, the authors analyzed the performance of a popular texture descriptors viz., Local Binary Pattern, Local Derivative Pattern and Histograms of Oriented Gradients for pose invariant problem. State of the art preprocessing techniques such as Discrete Cosine Transform, Difference of Gaussian, Multi Scale Retinex and Gradient face have also been applied before feature extraction. In the recognition phase K- nearest neighbor classifier is used to accomplish the classification task. To evaluate the efficiency of pose invariant face recognition algorithm three publicly available databases viz. UMIST, ORL and LFW datasets have been used. The above said databases have very wide pose variations and it is proved that the state of the art method is efficient only in constrained situations.


2019 ◽  
Vol 56 (24) ◽  
pp. 241505
Author(s):  
李燊 Li Shen ◽  
苏寒松 Su Hansong ◽  
刘高华 Liu Gaohua ◽  
吴慧华 Wu Huihua ◽  
王萌 Wang Meng

Author(s):  
Manjunatha Hiremath ◽  
P. S. Hiremath

Human face images are the basis not only for person recognition, but for also identifying other attributes like gender, age, ethnicity, and emotional states of a person. Therefore, face is an important biometric identifier in the law enforcement and human–computer interaction (HCI) systems. The 3D human face recognition is emerging as a significant biometric technology. Research interest into 3D face recognition has increased during recent years due to availability of improved 3D acquisition devices and processing algorithms. A 3D face image is represented by 3D meshes or range images which contain depth information. In this paper, the objective is to propose a new 3D face recognition method based on radon transform and symbolic factorial discriminant analysis using KNN and SVM classifier with similarity and dissimilarity measures, which are applied on 3D facial range images. The experimentation is done using three publicly available databases, namely, Bhosphorus, Texas and CASIA 3D face database. The experimental results demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document