scholarly journals Verification in Relevant Environment of a Physics-Based Synthetic Sensor for Flow Angle Estimation

Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 165
Author(s):  
Angelo Lerro ◽  
Piero Gili ◽  
Marco Pisani

In the area of synthetic sensors for flow angle estimation, the present work aims to describe the verification in a relevant environment of a physics-based approach using a dedicated technological demonstrator. The flow angle synthetic solution is based on a model-free, or physics-based, scheme and, therefore, it is applicable to any flying body. The demonstrator also encompasses physical sensors that provide all the necessary inputs to the synthetic sensors to estimate the angle-of-attack and the angle-of-sideslip. The uncertainty budgets of the physical sensors are evaluated to corrupt the flight simulator data with the aim of reproducing a realistic scenario to verify the synthetic sensors. The proposed approach for the flow angle estimation is suitable for modern and future aircraft, such as drones and urban mobility air vehicles. The results presented in this work show that the proposed approach can be effective in relevant scenarios even though some limitations can arise.

1984 ◽  
Vol 141 ◽  
pp. 109-122 ◽  
Author(s):  
H. M. Atassi

It is shown that for a thin airfoil with small camber and small angle of attack moving in a periodic gust pattern, the unsteady lift caused by the gust can be constructed by linear superposition to the Sears lift of three independent components accounting separately for the effects of airfoil thickness, airfoil camber and non-zero angle of attack to the mean flow. This is true in spite of the nonlinear dependence of the unsteady flow on the mean potential flow of the airfoil. Specific lift formulas are derived and analysed to assess the importance of mean flow angle of attack and airfoil camber on the gust response.


2021 ◽  
pp. 1567-1576
Author(s):  
Xiaoxiong Liu ◽  
Yuehang Zhang ◽  
Hui Zhao ◽  
Ruichen Ming

Author(s):  
Peter J. Attar ◽  
Raymond E. Gordnier ◽  
Jordan W. Johnston ◽  
William A. Romberg ◽  
Ramkumar N. Parthasarathy

The fluid and structural response of two different membrane wing Micro Air Vehicles is studied through computation and experiment. A (three) batten-reinforced fixed wing membrane micro air vehicle is used to determine the effect of membrane prestrain and fixed angle of attack on flutter and limit cycle behavior of fixed wing membrane Micro Air Vehicles. For each configuration tested, flutter and subsequent limit cycle oscillations are measured in wind tunnel tests and predicted using an aeroelastic computational model consisting of a nonlinear finite element model coupled to a vortex lattice solution of the Laplace equation and boundary conditions. Correlation between the predicted and measured onset of limit cycle oscillation is good as is the prediction of the amplitude of the limit cycle at the trailing edge of the lower membrane. A direct correlation between levels of strain and the phase of the membranes during the limit cycle is found in the computation and thought to also occur in the experiment. The second membrane wing micro air vehicle configuration is that of a plunging membrane airfoil model. This model is studied computationally using a sixth-order finite difference solution of the Navier-Stokes equations coupled to a nonlinear string finite element model. The effect, on the structural and fluid response, of plunging Strouhal number, reduced frequency and static angle of attack is examined. At two degree angle of attack, and Strouhal number of 0.2, the effect of increasing the plunging reduced frequency is to decrease the sectional lift coefficient and increase the sectional drag coefficient. At this angle of attack, minimal change in the sectional lift coefficient is found when increasing from a Strouhal number of 0.2 to 0.5 at reduced frequencies of 0.5 and 5.903, the lowest and highest values of this parameter which are studied in this work. For this angle of attack the maximum change which occurs when increasing the Strouhal number from 0.2 to 0.5 is at a reduced frequency of 1.5. When the effect of angle of attack is studied, it is found that at a Strouhal number of 0.5 and reduced frequency of 1.5 the plunging flexible model demonstrates improved lift characteristics over the fixed flexible airfoil case. The greatest improvement occurs at an angle of attack of 2 degrees followed by 10 degrees and then 6 degrees. Finally the effect on the flow characteristics of airfoil flexibility is investigated by increasing the membrane pre-strain from a nominal value of 5 percent to that of 20 percent. This increase in pre-strain results in a reduced value of sectional lift coefficient as compared the 5 percent pre-strain case at the same fixed angle of attack, Strouhal number and reduced frequency.


2002 ◽  
Vol 24 (2) ◽  
pp. 65-80 ◽  
Author(s):  
Chih-Kuang Yeh ◽  
Pai-Chi Li

In quantitative ultrasonic flow measurements, the beam-to-flow angle (i.e., Doppler angle) is an important parameter. An autoregressive (AR) spectral analysis technique in combination with the Doppler spectrum broadening effect was previously proposed to estimate the Doppler angle. Since only a limited number of flow samples are used, real-time two-dimensional Doppler angle estimation is possible. The method was validated for laminar flows with constant velocities. In clinical applications, the flow pulsation needs to be considered. For pulsatile flows, the flow velocity is time-varying and the accuracy of Doppler angle estimation may be affected. In this paper, the AR method using only a limited number of flow samples was applied to Doppler angle estimation of pulsatile flows. The flow samples were properly selected to derive the AR coefficients and then more samples were extrapolated based on the AR model. The proposed method was verified by both simulations and in vitro experiments. A wide range of Doppler angles (from 30° to 78°) and different flow rates were considered. The experimental data for the Doppler angle showed that the AR method using eight flow samples had an average estimation error of 3.50° compared to an average error of 7.08° for the Fast Fourier Transform (FFT) method using 64 flow samples. Results indicated that the AR method not only provided accurate Doppler angle estimates, but also outperformed the conventional FFT method in pulsatile flows. This is because the short data acquisition time is less affected by the temporal velocity changes. It is concluded that real-time two-dimensional estimation of the Doppler angle is possible using the AR method in the presence of pulsatile flows. In addition, Doppler angle estimation with turbulent flows is also discussed. Results show that both the AR and FFT methods are not adequate due to the spectral broadening effects from the turbulence.


Sign in / Sign up

Export Citation Format

Share Document