scholarly journals SHIL and DHIL Simulations of Nonlinear Control Methods Applied for Power Converters Using Embedded Systems

Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 241 ◽  
Author(s):  
Arthur Rosa ◽  
Matheus Silva ◽  
Marcos Campos ◽  
Renato Santana ◽  
Welbert Rodrigues ◽  
...  

In this work, a new real-time Simulation method is designed for nonlinear control techniques applied to power converters. We propose two different implementations: in the first one (Single Hardware in The Loop: SHIL), both model and control laws are inserted in the same Digital Signal Processor (DSP), and in the second approach (Double Hardware in The Loop: DHIL), the equations are loaded in different embedded systems. With this methodology, linear and nonlinear control techniques can be designed and compared in a quick and cheap real-time realization of the proposed systems, ideal for both students and engineers who are interested in learning and validating converters performance. The methodology can be applied to buck, boost, buck-boost, flyback, SEPIC and 3-phase AC-DC boost converters showing that the new and high performance embedded systems can evaluate distinct nonlinear controllers. The approach is done using matlab-simulink over commodity Texas Instruments Digital Signal Processors (TI-DSPs). The main purpose is to demonstrate the feasibility of proposed real-time implementations without using expensive HIL systems such as Opal-RT and Typhoon-HL.

2004 ◽  
Vol 12 (02) ◽  
pp. 149-174 ◽  
Author(s):  
KILSEOK CHO ◽  
ALAN D. GEORGE ◽  
RAJ SUBRAMANIYAN ◽  
KEONWOOK KIM

Matched-field processing (MFP) localizes sources more accurately than plane-wave beamforming by employing full-wave acoustic propagation models for the cluttered ocean environment. The minimum variance distortionless response MFP (MVDR–MFP) algorithm incorporates the MVDR technique into the MFP algorithm to enhance beamforming performance. Such an adaptive MFP algorithm involves intensive computational and memory requirements due to its complex acoustic model and environmental adaptation. The real-time implementation of adaptive MFP algorithms for large surveillance areas presents a serious computational challenge where high-performance embedded computing and parallel processing may be required to meet real-time constraints. In this paper, three parallel algorithms based on domain decomposition techniques are presented for the MVDR–MFP algorithm on distributed array systems. The parallel performance factors in terms of execution times, communication times, parallel efficiencies, and memory capacities are examined on three potential distributed systems including two types of digital signal processor arrays and a cluster of personal computers. The performance results demonstrate that these parallel algorithms provide a feasible solution for real-time, scalable, and cost-effective adaptive beamforming on embedded, distributed array systems.


2013 ◽  
Vol 198 ◽  
pp. 260-265 ◽  
Author(s):  
Bartosz Brzozowski ◽  
Wiesław Sobieraj ◽  
Konrad Wojtowicz

During last few years avionics system research platform was invented at the Military University of Technology. This modular simulator allows user to design and verify avionics system software using hardware-in-the-loop technique. Mathematical model of an airplane under tests is implemented on a high-performance computer which response to all control signals and environmental disturbances. Environment is simulated on a separate computer which can also visualize orientation and movement of the airplane. Plane structure and aerodynamic features as well as control data can be modified accordingly to user needs. The third PC is used as an interface unit between research platform and main computational unit of the avionics system. This device can send and receive information in real-time using various data protocols and interfaces depending on sensors and actuators that are planned to be used in real system. Those three computers work in a local area network and exchange data using Gigabit Ethernet standard. Possibility to simulate behavior of an UAV controlled by the developed avionics system implemented on an embedded computer working in hardware-in-the-loop mode on the platform, allows software developer to debug any part of the application in various environment conditions very close to reality. Research platform gives also the possibility to modify algorithm and adjust its parameters in real-time to verify suitability of the implemented avionics system software for the particular UAV. The avionics system software developed using this simulation method minimize expensive in-flight tests and assure failsafe performance after first successful flight


2015 ◽  
Vol 19 (1) ◽  
pp. 21
Author(s):  
Evgenije M. Adžić ◽  
Vlado B. Porobić ◽  
Marko S. Vekić ◽  
Zoran R. Ivanović ◽  
Vladimir A. Katić

This paper proposes an improved and robustinduction motor drive control method which uses minimalnumber of sensors, providing only dc-link current measurementas a feedback signal. The proposed dc-link current samplingscheme and modified asymmetrical PWM pattern cancelcharacteristic waveform errors which exist in all threereconstructed line currents. In that way, proposed method issuitable for high-quality and high-performance drives.Comparison between conventional and proposed currentreconstruction method is performed using hardware-in-the-loop(HIL) test platform and digital signal processor (DSP).


1999 ◽  
Author(s):  
Helge Kloos ◽  
Jens P. Wittenburg ◽  
Willm Hinrichs ◽  
Hanno Lieske ◽  
Peter Pirsch

Author(s):  
Leopoldo Angrisani ◽  
Mauro D'Arco ◽  
Charles Greenhall ◽  
Rosario Schiano Lo Moriello

2004 ◽  
Vol 75 (10) ◽  
pp. 4265-4267
Author(s):  
B. B. Carvalho ◽  
H. Fernandes ◽  
J. Sousa ◽  
C. A. F. Varandas

Author(s):  
Abouzahir Mohamed ◽  
Elouardi Abdelhafid ◽  
Bouaziz Samir ◽  
Latif Rachid ◽  
Tajer Abdelouahed

The improved particle filter based simultaneous localization and mapping (SLAM) has been developed for many robotic applications. The main purpose of this article is to demonstrate that recent heterogeneous architectures can be used to implement the FastSLAM2.0 and can greatly help to design embedded systems based robot applications and autonomous navigation. The algorithm is studied, optimized and evaluated with a real dataset using different sensors data and a hardware in the loop (HIL) method. Authors have implemented the algorithm on a system based embedded applications. Results demonstrate that an optimized FastSLAM2.0 algorithm provides a consistent localization according to a reference. Such systems are suitable for real time SLAM applications.


2018 ◽  
Vol 246 ◽  
pp. 03044 ◽  
Author(s):  
Guozhao Zeng ◽  
Xiao Hu ◽  
Yueyue Chen

Convolutional Neural Networks (CNNs) have become the most advanced algorithms for deep learning. They are widely used in image processing, object detection and automatic translation. As the demand for CNNs continues to increase, the platforms on which they are deployed continue to expand. As an excellent low-power, high-performance, embedded solution, Digital Signal Processor (DSP) is used frequently in many key areas. This paper attempts to deploy the CNN to Texas Instruments (TI)’s TMS320C6678 multi-core DSP and optimize the main operations (convolution) to accommodate the DSP structure. The efficiency of the improved convolution operation has increased by tens of times.


2011 ◽  
Vol 204-210 ◽  
pp. 2113-2116
Author(s):  
Yan Zhe Li ◽  
Duo Wang Fan ◽  
Yang Zhao

A controller based on DSP (Digital signal processor) is built during Arc Ion Plating. The purpose of controller is to realize real-time and flexible control on Arc Source Device. It is shown that by using DSP, Arc Source Device can be controlled and protected online. As a result, not only can Arc Source Device change output current according to the order from upper monitor momentarily, but also the faulty or failed Arc Source Device can be isolated rapidly.


Sign in / Sign up

Export Citation Format

Share Document