scholarly journals Network-Oriented Real-Time Embedded System Considering Synchronous Joint Space Motion for an Omnidirectional Mobile Robot

Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 317 ◽  
Author(s):  
Raimarius Delgado ◽  
Byoung Choi

This paper proposes a real-time embedded system for joint space control of omnidirectional mobile robots. Actuators driving an omnidirectional mobile robot are connected in a line topology which requires synchronization to move simultaneously in translation and rotation. We employ EtherCAT, a real-time Ethernet network, to control servo controllers for the mobile robot. The first part of this study focuses on the design of a low-cost embedded system utilizing an open-source EtherCAT master. Although satisfying real-time constraints is critical, a desired trajectory on the center of the mobile robot should be decomposed into the joint space to drive the servo controllers. For the center of the robot, a convolution-based path planner and a corresponding joint space control algorithm are presented considering its physical limits. To avoid obstacles that introduce geometric constraints on the curved path, a trajectory generation algorithm considering high curvature turning points is adapted for an omnidirectional mobile robot. Tracking a high curvature path increases mathematical complexity, which requires precise synchronization between the actuators of the mobile robot. An improvement of the distributed clock—the synchronization mechanism of EtherCAT for slaves—is presented and applied to the joint controllers of the mobile robot. The local time of the EtherCAT master is dynamically adjusted according to the drift of the reference slave, which minimizes the synchronization error between each joint. Experiments are conducted on our own developed four-wheeled omnidirectional mobile robot. The experiment results confirm that the proposed system is very effective in real-time control applications for precise motion control of the robot even for tracking high curvature paths.

2007 ◽  
Vol 73 (12) ◽  
pp. 1369-1374
Author(s):  
Hiromi SATO ◽  
Yuichiro MORIKUNI ◽  
Kiyotaka KATO

1986 ◽  
Vol 19 (13) ◽  
pp. 113-117
Author(s):  
J.J. Serrano ◽  
C. Cebrián ◽  
J. Vila ◽  
R. Ors

Leonardo ◽  
2012 ◽  
Vol 45 (4) ◽  
pp. 322-329 ◽  
Author(s):  
Byron Lahey ◽  
Winslow Burleson ◽  
Elizabeth Streb

Translation is a multimedia dance performed on a vertical wall filled with the projected image of a lunar surface. Pendaphonics is a low-cost, versatile, and robust motion-sensing hardware-software system integrated with the rigging of Translation to detect the dancers' motion and provide real-time control of the virtual moonscape. Replacing remotely triggered manual cues with high-resolution, real-time control by the performers expands the expressive range and ensures synchronization of feedback with the performers' movements. This project is the first application of an ongoing collaboration between the Motivational Environments Research Group at Arizona State University (ASU) and STREB Extreme Action Company.


Author(s):  
Ryan W. Krauss

Arduino microcontrollers are popular, low-cost, easy-to-program, and have an active user community. This paper seeks to quantitatively assess whether or not Arduinos are a good fit for real-time feedback control experiments and controls education. Bode plots and serial echo tests are used to assess the use of Arduinos in two scenarios: a prototyping mode that involves bidirectional real-time serial communication with a PC and a hybrid mode that streams data in real-time over serial. The closed-loop performance with the Arduino is comparable to that of another more complicated and more expensive microcontroller for the plant considered. Some practical tips on using an Arduino for real-time feedback control are also given.


Author(s):  
Daniel J. Block ◽  
Mark B. Michelotti ◽  
Ramavarapu S. Sreenivas

AbstractThis paper describes the development of an embedded system whose purpose is to control the Novint Falcon as a robot, and to develop a control experiment that demonstrates the use the Novint Falcon as a robotic actuator. The Novint Falcon, which is a PC input device, is “haptic” in the sense that it has a force feedback component. Its relatively low cost compared with other platforms makes it a good candidate for academic application in robot modeling and control. An embedded system is developed to interface with the multiple motors and sensors present in the Novint Falcon, which is subsequently used to control three independent Novint Falcons for a “ballon- plate” experiment. The results show that the device is a viable solution for high-speed actuation of small-scale mechanical systems.


2012 ◽  
Vol 614-615 ◽  
pp. 1562-1565
Author(s):  
Yu Sen Li ◽  
Ying Sun

In order to realize the sensor signal acquisition and analysis of data, according to data acquisition system design ideas of the PCI bus, applying to CPLD complex programmable controller and CH365 interface chip and combined with the actual needs of data collection ,designed a kind of low cost, high speed process controller. CPLD realizes data cache control and the control of reading. This design can gather 16 roads analog signals and real-time pulse signal of 8 roads on the same time, which includes a 16-bit digital output channel and a 32-bit counter, could be used in the real-time control.


Sign in / Sign up

Export Citation Format

Share Document