scholarly journals A Multi-Switching Tracking Control Scheme for Autonomous Mobile Robot in Unknown Obstacle Environments

Electronics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 42
Author(s):  
Jianhua Li ◽  
Jianfeng Sun ◽  
Guolong Chen

The obstacle avoidance control of mobile robots has been widely investigated for numerous practical applications. In this study, a control scheme is presented to deal with the problem of trajectory tracking while considering obstacle avoidance. The control scheme is simplified into two controllers. First, an existing trajectory tracking controller is used to track. Next, to avoid the possible obstacles in the environment, an obstacle avoidance controller, which is used to determine the fastest collision avoidance direction to follow the boundary of the obstacle at a constant distance, is proposed based on vector relationships between the robot and an obstacle. Two controllers combined via a switch strategy are switched to perform the task of trajectory tracking or obstacle avoidance. The stability of each controller in the control scheme is guaranteed by a Lyapunov function. Finally, several simulations are conducted to evaluate the proposed control scheme. The simulation results indicate that the proposed scheme can be applied to the mobile robot to ensure its safe movement in unknown obstacle environments.

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1951
Author(s):  
Shun-Hung Tsai ◽  
Yi-Ping Chang ◽  
Hung-Yi Lin ◽  
Luh-Maan Chang

A robust trajectory tracking control scheme for quadrotor unmanned aircraft vehicles under uncertainties is proposed herein. A tracking controller combined with the sliding mode and integral backstepping is performed for position and attitude tracking. The stability of the trajectory tracking controller of the quadrotor is investigated via Lyapunov stability analysis. By incorporating force and torque disturbances into numerical simulations, the results demonstrate the effectiveness of the proposed quadrotor trajectory controller. Finally, the experiments validate the feasibility of the proposed controller.


2020 ◽  
Vol 42 (9) ◽  
pp. 1675-1689 ◽  
Author(s):  
Yingxun Wang ◽  
Yan Ma ◽  
Zhihao Cai ◽  
Jiang Zhao

In this paper, a new swarm intelligent-based backstepping control scheme is proposed for quadrotor trajectory tracking and obstacle avoidance. First, the sliding mode extended state observer (SMESO) is used to estimate different disturbances, and the tracking differentiator (TD) is integrated to enhance the performance of backstepping control scheme. Then, the chaotic grey wolf optimization (CGWO) is developed with chaotic initialization and chaotic search to optimize the parameters of attitude and position controllers. Further, the virtual target guidance approach is proposed for quadrotor trajectory tracking and obstacle avoidance. Comparative simulations and Monte Carlo tests are carried out to demonstrate the effectiveness and robustness of the CGWO-based backstepping control scheme and virtual target guidance approach.


2013 ◽  
Vol 443 ◽  
pp. 119-122
Author(s):  
Bin Zhou ◽  
Jin Fa Qian

Mobile robot is an intelligent system which can move freely and is scheduled to complete the task in the working environment. Obstacle avoidance of mobile robot is the research hotspot in the control field of the mobile robot. The mobile robot obstacle avoidance methods are classified, including the traditional algorithms and the intelligent algorithms. This paper summarizes the intelligent algorithm in the mobile robot obstacle avoidance technique in the present situation, and the intelligent algorithm which is the most researched in the current. Finally, this paper prospects the development trend of intelligent obstacle avoidance of the robot.


Sign in / Sign up

Export Citation Format

Share Document