scholarly journals Influence of PWM Methods on Semiconductor Losses and Thermal Cycling of 15-kVA Three-Phase SiC Inverter for Aircraft Applications

Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 620 ◽  
Author(s):  
Bernardo Cougo ◽  
Lenin Morais ◽  
Gilles Segond ◽  
Raphael Riva ◽  
Hoan Tran Duc

This paper presents the influence of different pulse width modulation (PWM) methods on losses and thermal stresses in SiC power modules used in a three-phase inverter. The variation of PWM methods directly impacts instantaneous losses on these semiconductors, consequently resulting in junction temperature swing at the fundamental frequency of the converter’s output current. This thermal cycling can significantly reduce the lifetime of these components. In order to determine semiconductor losses, one needs to characterize SiC devices to calculate the instantaneous power. The characterization methodology of the devices, the calculation of instantaneous power and temperature of SiC dies, and the influence of the different PWM methods are presented. A 15-kVA inverter is built in order to obtain experimental results to confirm the characterization and loss calculation, and we show the best PWM methods to increase efficiency and reliability of the three-phase inverter for specific aircraft applications.

2015 ◽  
Vol 51 (6) ◽  
pp. 4664-4676 ◽  
Author(s):  
Juan Colmenares ◽  
Dimosthenis Peftitsis ◽  
Jacek Rabkowski ◽  
Diane-Perle Sadik ◽  
Georg Tolstoy ◽  
...  

Author(s):  
Raymundo Cordero Garcia ◽  
João Onofre Pereira Pinto

This paper presents a simplified algorithm of space vector pulse width modulation (SVPWM) for a two-level three-phase inverter, which can operate in undermodulation and overmodulation modes. In other simplifications founded in literature, the reference voltages are modified and compared with a triangular carrier to estimate the switching states of the inverter. However, this paper proposes the modification of the carrier signal instead of the references. This procedure reduces the number of mathematical operations and increases the execution speed of SVPWM algorithm in DSPs or FPGAs. The reference voltages are sinusoidal, even for overmodulation mode. Simulation and experimental results proves that the proposed simplification produces the same switching patterns than conventional SVPWM, is simpler and is faster than other simplifications.


Sign in / Sign up

Export Citation Format

Share Document