scholarly journals Proactive Forensics in IoT: Privacy-Aware Log-Preservation Architecture in Fog-Enabled-Cloud Using Holochain and Containerization Technologies

Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1172 ◽  
Author(s):  
Kanwal Janjua ◽  
Munam Ali Shah ◽  
Ahmad Almogren ◽  
Hasan Ali Khattak ◽  
Carsten Maple ◽  
...  

Collecting and preserving the smart environment logs connected to cloud storage is challenging due to the black-box nature and the multi-tenant cloud models which can pervade log secrecy and privacy. The existing work for log secrecy and confidentiality depends on cloud-assisted models, but these models are prone to multi-stakeholder collusion problems. This study proposes ’PLAF,’ a holistic and automated architecture for proactive forensics in the Internet of Things (IoT) that considers the security and privacy-aware distributed edge node log preservation by tackling the multi-stakeholder issue in a fog enabled cloud. We have developed a test-bed to implement the specification, as mentioned earlier, by incorporating many state-of-the-art technologies in one place. We used Holochain to preserve log integrity, provenance, log verifiability, trust admissibility, and ownership non-repudiation. We introduced the privacy preservation automation of log probing via non-malicious command and control botnets in the container environment. For continuous and robust integration of IoT microservices, we used docker containerization technology. For secure storage and session establishment for logs validation, Paillier Homomorphic Encryption, and SSL with Curve25519 is used respectively. We performed the security and performance analysis of the proposed PLAF architecture and showed that, in stress conditions, the automatic log harvesting running in containers gives a 95% confidence interval. Moreover, we show that log preservation via Holochain can be performed on ARM-Based architectures such as Raspberry Pi in a very less amount of time when compared with RSA and blockchain.

Author(s):  
Peng Hu ◽  
Yongli Wang ◽  
Ahmadreza Vajdi ◽  
Bei Gong ◽  
Yongjian Wang

Road side units (RSUs) can act as fog nodes to perform data aggregation at the edge of network, which can reduce communication overhead and improve the utilization of network resources. However, because the RSU is public infrastructure, this feature may bring data security and privacy risks in data aggregation. In this paper, we propose a secure multi-subinterval data aggregation scheme, named SMDA, with interval privacy preservation for vehicle sensing systems. Specifically, our scheme combines the [Formula: see text] encoding theory and proxy re-encryption to protect interval privacy, this can ensure that the interval information is only known by the data center, and the RSU can classify the encrypted data without knowing the plaintext of the data and interval information. Meanwhile, our scheme employs the Paillier homomorphic encryption to accomplish data aggregation at the RSU, and the Identity-based batch authentication technology to solve authentication and data integrity. Finally, the security analysis and performance evaluations illustrate the safety and efficiency of our scheme.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jabar Mahmood ◽  
Zongtao Duan ◽  
Heng Xue ◽  
Yun Yang ◽  
Michael Abebe Berwo ◽  
...  

The advancements in Vehicular Ad Hoc Networks (VANETs) require more intelligent security protocols that ultimately provide unbreakable security to vehicles and other components of VANETs. VANETs face various types of security pitfalls due to the openness characteristics of the VANET communication infrastructure. Researchers have recently proposed different mutual authentication schemes that address security and privacy issues in vehicle-to-vehicle (V2V) communication. However, some V2V security schemes suffer from inadequate design and are hard to implement practically. In addition, some schemes face vehicle traceability and lack anonymity. Hence, this paper’s primary goal is to enhance privacy preservation through mutual authentication and to achieve better security and performance. Therefore, this article first describes the vulnerabilities of a very recent authentication scheme presented by Vasudev et al. Our analysis proves that the design of Vasudev et al.’s scheme is incorrect, and resultantly, the scheme does not provide mutual authentication between a vehicle and vehicle server when multiple vehicles are registered with the vehicle sever. Furthermore, this paper proposes a secure message transmission scheme for V2V in VANETs. The proposed scheme fulfills the security and performance requirements of VANETs. The security analysis of the proposed scheme using formal BAN and informal discussion on security features confirm that the proposed scheme fulfills the security requirements, and the performance comparisons show that the proposed scheme copes with the lightweightness requirements of VANETs.


2021 ◽  
Vol 11 (4) ◽  
pp. 7321-7325
Author(s):  
M. F. Hyder ◽  
S. Tooba ◽  
. Waseemullah

In this paper, the implementation of the General Secure Cloud Storage Protocol is carried out and instantiated by a multiplicatively Homomorphic Encryption Scheme (HES). The protocol provides a system for secure storage of data over the cloud, thereby allowing the client to carry out the operational tasks on it efficiently. The work focuses on the execution of five major modules of the protocol. We also evaluate the performance of the protocol with respect to the computation cost of these modules on the basis of different security parameters and datasets by conducting a series of experiments. The cloud was built using OpenStack and the data were outsourced from the client’s system to the cloud to study the security features and performance metrics when adopting the cloud environment.


2019 ◽  
Vol 16 (10) ◽  
pp. 4389-4393 ◽  
Author(s):  
Mani Goyal ◽  
Avinash Sharma

Cloud computing is mentioned to evolve dynamically and cloud transformation is getting easier all the time. Different cloud aspects are emerging in an efficient manner and have the potential to transform the traditional way of computing. With the advent of data sharing in cloud computing, the demand for outsourcing data has rapidly increased in the last decade. However, several security and privacy challenges exist impeding the acceptance of cloud computing. A highly secure system is required to guard an organizational entity, its resources, and assets. In this article, we propose and implement a novel architecture, the first of its kind, providing an enhanced level of security for outsourcing data in a cloud computing environment consisting of multiple independent cloud providers. The framework consists of dual encryption combining Homomorphic encryption at the client end and Blowfish cryptographic technique at the server side for authorization. The diverse security issues associated with information integrity, security, confidentiality, and authenticationmust be addressed. Simulations and analysis were performed on an Oracle virtual machine Virtual-Box and a Fog environment on Ubuntu 12.04 platform. Extensive safety measures and performance analysis considering the Encrypted file size and Encryption time demonstrate that our projected proposal is vastly proficient and satisfies the requirements for secure data sharing.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (7) ◽  
pp. 37-46 ◽  
Author(s):  
PEDRO E.G. LOUREIRO ◽  
SANDRINE DUARTE ◽  
DMITRY V. EVTUGUIN ◽  
M. GRAÇA V.S. CARVALHO

This study puts particular emphasis on the role of copper ions in the performance of hydrogen peroxide bleaching (P-stage). Owing to their variable levels across the bleaching line due to washing filtrates, bleaching reagents, and equipment corrosion, these ions can play a major role in hydrogen peroxide decomposition and be detrimental to polysaccharide integrity. In this study, a Cu-contaminated D0(EOP)D1 prebleached pulp was subjected to an acidic washing (A-stage) or chelation (Q-stage) before the alkaline P-stage. The objective was to understand the isolated and combined role of copper ions in peroxide bleaching performance. By applying an experimental design, it was possible to identify the main effects of the pretreatment variables on the extent of metals removal and performance of the P-stage. The acid treatment was unsuccessful in terms of complete copper removal, magnesium preservation, and control of hydrogen peroxide consumption in the following P-stage. Increasing reaction temperature and time of the acidic A-stage improved the brightness stability of the D0(EOP)D1AP bleached pulp. The optimum conditions for chelation pretreatment to maximize the brightness gains obtained in the subsequent P-stage with the lowest peroxide consumption were 0.4% diethylenetriaminepentaacetic acid (DTPA), 80ºC, and 4.5 pH.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 915
Author(s):  
Gözde Dursun ◽  
Muhammad Umer ◽  
Bernd Markert ◽  
Marcus Stoffel

(1) Background: Bioreactors mimic the natural environment of cells and tissues by providing a controlled micro-environment. However, their design is often expensive and complex. Herein, we have introduced the development of a low-cost compression bioreactor which enables the application of different mechanical stimulation regimes to in vitro tissue models and provides the information of applied stress and strain in real-time. (2) Methods: The compression bioreactor is designed using a mini-computer called Raspberry Pi, which is programmed to apply compressive deformation at various strains and frequencies, as well as to measure the force applied to the tissue constructs. Besides this, we have developed a mobile application connected to the bioreactor software to monitor, command, and control experiments via mobile devices. (3) Results: Cell viability results indicate that the newly designed compression bioreactor supports cell cultivation in a sterile environment without any contamination. The developed bioreactor software plots the experimental data of dynamic mechanical loading in a long-term manner, as well as stores them for further data processing. Following in vitro uniaxial compression conditioning of 3D in vitro cartilage models, chondrocyte cell migration was altered positively compared to static cultures. (4) Conclusion: The developed compression bioreactor can support the in vitro tissue model cultivation and monitor the experimental information with a low-cost controlling system and via mobile application. The highly customizable mold inside the cultivation chamber is a significant approach to solve the limited customization capability of the traditional bioreactors. Most importantly, the compression bioreactor prevents operator- and system-dependent variability between experiments by enabling a dynamic culture in a large volume for multiple numbers of in vitro tissue constructs.


2005 ◽  
Vol 20 (16) ◽  
pp. 3811-3814
Author(s):  
◽  
PAUL LUJAN

A new silicon detector was designed by the CDF collaboration for Run IIb of the Tevatron at Fermilab. The main building block of the new detector is a "supermodule" or "stave", an innovative, compact and lightweight structure of several readout hybrids and sensors with a bus cable running directly underneath the sensors to carry power, data, and control signals to and from the hybrids. The hybrids use a new, radiation-hard readout chip, the SVX4 chip. A number of SVX4 chips, readout hybrids, sensors, and supermodules were produced and tested in preproduction. The performance (including radiation-hardness) and yield of these components met or exceeded all design goals. The detector design goals, solutions, and performance results are presented.


Neurosurgery ◽  
2008 ◽  
Vol 63 (3) ◽  
pp. 487-497 ◽  
Author(s):  
Timothy H. Lucas ◽  
Daniel L. Drane ◽  
Carl B. Dodrill ◽  
George A. Ojemann

ABSTRACT OBJECTIVE The purpose of this investigation was to determine whether clinical speech deficits after brain injury are associated with functional speech reorganization. METHODS Across an 18-year interval, 11 patients with mild-to-moderate speech deficits underwent language mapping as part of their treatment for intractable epilepsy. These “aphasics” were compared with 14 matched “control” patients with normal speech who also were undergoing epilepsy surgery. Neuroanatomic data were compared with quantitative language profiles and clinical variables. RESULTS Cortical lesions were evident near speech areas in all aphasia cases. As expected, aphasic and control patients were distinguished by quantitative language profiles. The groups were further distinguished by the anatomic distribution of their speech sites. A significantly greater proportion of frontal speech sites was found in patients with previous brain injury, consistent with frontal site recruitment. The degree of frontal recruitment varied as a function of patient age at the time of initial brain injury; earlier injuries were associated with greater recruitment. The overall number of speech sites remained the same after injury. Significant associations were found between the number of the speech sites, naming fluency, and the lesion proximity in the temporal lobe. CONCLUSION Language maps in aphasics demonstrated evidence for age-dependent functional recruitment in the frontal, but not temporal, lobe. The proximity of cortical lesions to temporal speech sites predicted the overall extent of temporal lobe speech representation and performance on naming fluency. These findings have implications for neurosurgical planning in patients with preoperative speech deficits.


Sign in / Sign up

Export Citation Format

Share Document