scholarly journals Control of Single-Phase Electrolytic Capacitor-Less Isolated Converter for DC Low Voltage Residential Networks

Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1401
Author(s):  
Nelson Santos ◽  
J. Fernando Silva ◽  
Vasco Soares

In recent years, there has been a desire to improve electricity generation and consumption, to reach sustainability. Technological solutions today allow a rational use of electricity with good overall performance. Traditionally, from production to distribution, electrical energy is AC-supported for compatibility reasons and easy voltage level transformation. However, nowadays most electric loads need DC power to work properly. A single high-efficiency central AC-DC power converter may be advantageous in eliminating several less efficient AC-DC embedded converters, distributed all over a residential area. This paper presents a new single-phase AC-DC converter using one active bridge (most isolated topologies are based on the dual active bridge concept) and a high-frequency isolation transformer with low-value non-electrolytic capacitors, together with its control system design. The converter can be introduced into future low-voltage DC microgrids for residential buildings, as an alternative to several embedded AC-DC converters. Non-linear control techniques (sliding mode control and the Lyapunov direct method) are employed to guarantee stability in the output DC low voltage with near unity power factor compensation in the AC grid. The designed converter and controllers were simulated using Matlab/Simulink and tested in a lab experimental prototype using digital signal processing (DSP) to evaluate system performance.

Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2191 ◽  
Author(s):  
Juyong Kim ◽  
Hongjoo Kim ◽  
Jintae Cho ◽  
Youngpyo Cho

This paper describes the design and field application of a high-efficiency single-phase AC/DC converter that is suitable for distribution lines. First, an appropriate AC/DC converter was designed in consideration of the environment of the application system. In order to ensure high efficiency and high reliability, we designed an optimum switching element and capacitor suitable for the converter, and the protection element of the AC/DC converter was designed based on these elements. The control function for the power converter suitable for an LVDC distribution system is proposed for highly reliable operation. The AC/DC converter was manufactured based on the design and its performance was verified during application in an actual low-voltage DC (LVDC) distribution grid through tests at the demonstration site. The application to a DC distribution system in an actual grid is very rare and it is expected that it will contribute to the expansion of LVDC distribution.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4883
Author(s):  
Álvaro Ojeda-Rodríguez ◽  
Pablo González-Vizuete ◽  
Joaquín Bernal-Méndez ◽  
María A. Martín-Prats

DC-DC isolated converters allowing a bidirectional flow of energy between High-Voltage DC and Low-Voltage DC networks have been proposed to be integrated in future on board power distribution systems. These converters must meet the specially stringent efficiency and power density requirements that are typical of the aeronautic industry. This makes it specially challenging to determine which converter topology is best suited for each particular application. This work presents a thorough review of several topologies of bidirectional DC-DC power converters that are considered good candidates to meet certain important aeronautic requirements, as those related with high efficiency and high power density. We perform simulations on virtual prototypes, constructed by using detailed component models, and optimized following design criteria that are in accordance with those typically imposed by aeronautic requirements. This comparative analysis is aimed to clearly identify the advantages and drawbacks of each topology, and to relate them with the required voltage and power levels. As an outcome, we point out the topologies that, for the required power level at the chosen switching frequencies, yield higher efficiency in the whole range of required operation points and that are expected to allow more important weight reductions.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Naveed Ashraf ◽  
Tahir Izhar ◽  
Ghulam Abbas

The suggested single-phase ac-to-ac matrix converter operated with inverting and noninverting characteristics may solve the grid voltage swell and sag problem in power distribution system, respectively. It is also employed as a direct frequency changer for domestic induction heating. The output voltage is regulated through duty cycle control of high frequency direct PWM (DPWM) and indirect PWM (IDPWM) switching devices. The DPWM control switches control the switching states of IDPWM switching devices. The inverting and noninverting characteristics are achieved with low voltage stresses and hence low dv/dt across the high and low frequency-controlled switches. This reduces their voltage rating and losses. The high voltage overshoot problem in frequency step-up operation is also analyzed. The sliding mode (SM) controller is employed to solve this problem. Pulse selective approach determines the power quality of load voltage. The validity of the mathematically computed values is carried out by modelling the proposed topology in MATLAB/Simulink environment and through hardware results.


2013 ◽  
Author(s):  
Su-Han Kwon ◽  
◽  
Min-Gi Kim ◽  
Geun-Yong Park ◽  
Doo-Hee Yoo ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Jorge Rivera ◽  
Florentino Chavira ◽  
Alexander Loukianov

This work presents a novel discrete-time modeling of a boost dc-to-dc power converter by means of the symplectic Euler method. Then, on the basis of this model, a discrete-time sliding mode regulator is designed in order to force the power converter to behave as a dc-to-ac power converter. Simulation and experimental results are carried on, where the great performance of the proposed methodology is verified.


Sign in / Sign up

Export Citation Format

Share Document