scholarly journals Bi-Level Operation Scheduling of Distribution Systems with Multi-Microgrids Considering Uncertainties

Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1441
Author(s):  
Saeid Esmaeili ◽  
Amjad Anvari-Moghaddam ◽  
Erfan Azimi ◽  
Alireza Nateghi ◽  
João P. S. Catalão

A bi-level operation scheduling of distribution system operator (DSO) and multi-microgrids (MMGs) considering both the wholesale market and retail market is presented in this paper. To this end, the upper-level optimization problem minimizes the total costs from DSO’s point of view, while the profits of microgrids (MGs) are maximized in the lower-level optimization problem. Besides, a scenario-based stochastic programming framework using the heuristic moment matching (HMM) method is developed to tackle the uncertain nature of the problem. In this regard, the HMM technique is employed to model the scenario matrix with a reduced number of scenarios, which is effectively suitable to achieve the correlations among uncertainties. In order to solve the proposed non-linear bi-level model, Karush–Kuhn–Tucker (KKT) optimality conditions and linearization techniques are employed to transform the bi-level problem into a single-level mixed-integer linear programming (MILP) optimization problem. The effectiveness of the proposed model is demonstrated on a real-test MMG system.

Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1884 ◽  
Author(s):  
Saeid Esmaeili ◽  
Amjad Anvari-Moghaddam ◽  
Shahram Jadid ◽  
Josep Guerrero

Due to the recent developments in the practical implementation of remotely controlled switches (RCSs) in the smart distribution system infrastructure, distribution system operators face operational challenges in the hourly reconfigurable environment. This paper develops a stochastic Model Predictive Control (MPC) framework for operational scheduling of distribution systems with dynamic and adaptive hourly reconfiguration. The effect of coordinated integration of energy storage systems and demand response programs through hourly reconfiguration on the total costs (including cost of total loss, switching cost, cost of bilateral contract with power generation owners and responsive loads, and cost of exchanging power with the wholesale market) is investigated. A novel Switching Index (SI) based on the RCS ages and critical points in the network along with the maximum number of switching actions is introduced. Due to nonlinear nature of the problem and several existing binary variables, it is basically considered as a Mixed Integer Non-Linear Programming (MINLP) problem, which is transformed into a Mixed Integer Linear Programming (MILP) problem. The satisfactory performance of the proposed model is demonstrated through its application on a modified IEEE 33-bus distribution system.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2579 ◽  
Author(s):  
Guang Shen ◽  
Yong Zhang ◽  
Haifeng Qiu ◽  
Chongyu Wang ◽  
Fushuan Wen ◽  
...  

A comprehensive method is presented in this work to locate faults in distribution systems with distributed generators (DGs). A two-level model is developed for this purpose with both telecommunication and telemetering data employed, so as to make good use of fused information for attaining a more credible optimization solution under scenarios with alarm distortions of feeder terminal units (FTUs) or loss during communication. First, at the upper level, an analytic model is developed to search all potential faulted sections/candidates based on the telecommunication data. Then, on the lower level, a model is presented using the telemetering data to identify the most likely fault location from the candidates provided by the upper model. The essential features of the two-level diagnosis model are demonstrated through a number of case studies. Simulation results have shown that the proposed approach is capable of not only locating the faulted section(s) in a distribution system with DGs but also identifying false and/or missing alarms.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1766 ◽  
Author(s):  
Saeid Esmaeili ◽  
Amjad Anvari-Moghaddam ◽  
Shahram Jadid

This paper proposes an optimal operational scheduling of a reconfigurable multi-microgrid (MG) distribution system complemented by demand response programs and Energy Storage Systems (ESSs) in an uncertain environment. Since there is a set of competing players with inherently conflicting objectives in the system under study such as the Distribution System Operator (DSO) and MG owners, a one-leader multi-follower-type bi-level optimization model is proposed. In this framework, the upper-level player as a leader minimizes the total cost from DSO’s point of view, while the lower-level players as multi-followers maximize the profit of MG owners. Since the resulting model is a non-linear bi-level optimization problem, it is transformed into a single-level mixed-integer second-order cone programming problem through Karush–Kuhn–Tucker conditions. The satisfactory performance of the proposed model is investigated on a real-test system under different scenarios and working conditions.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3126 ◽  
Author(s):  
Cong Liu ◽  
Jingyang Zhou ◽  
Yi Pan ◽  
Zhiyi Li ◽  
Yifei Wang ◽  
...  

The integration of shiftable/curtailment distribution generators (DGs) along with quick-response storage has not only increased the transaction’s flexibility but also puzzled the bidding willingness of transmission-connected market players (TMPs). In this paper, the method of heterogeneous decomposition and coordination (HGDC) is applied to decompose the integrated transmission-distribution market framework into a bi-level problem with a transmission wholesale market master problem and several distribution retail market subproblems in a decentralized organization structure. The price-based bidding willingness of demand-side resources’ (DSRs’) aggregator is simulated considering the relation between distribution system operator’s (DSO’s) operation modes and its equivalent market transactive price. Besides the traditional mixed-integer linear programming (MILP) model, the active reconfiguration model of DSOs based on mixed-integer second-order conic programming (MI-SOCP) is proposed to rearrange its operation switch status and elaborate its operation cost according to the market transaction. Multi-period optimal operation modes could be obtained through an HGDC-based iteration process by coordinating the transmission system operator (TSO) with DSOs and considering the market energy equilibrium and reserve requirements for security considerations. Karush-Kuhn-Tucker (KKT) conditions are used to testify the optimality and convergence of the bi-level model in theory. The T5-3D33 case is employed to illustrate the efficiency of the proposed model and method.


2018 ◽  
Vol 210 ◽  
pp. 881-895 ◽  
Author(s):  
Pol Olivella-Rosell ◽  
Eduard Bullich-Massagué ◽  
Mònica Aragüés-Peñalba ◽  
Andreas Sumper ◽  
Stig Ødegaard Ottesen ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3399 ◽  
Author(s):  
Marco Cruz ◽  
Desta Fitiwi ◽  
Sérgio Santos ◽  
Sílvio Mariano ◽  
João Catalão

Electrical distribution system operators (DSOs) are facing an increasing number of challenges, largely as a result of the growing integration of distributed energy resources (DERs), such as photovoltaic (PV) and wind power. Amid global climate change and other energy-related concerns, the transformation of electrical distribution systems (EDSs) will most likely go ahead by modernizing distribution grids so that more DERs can be accommodated. Therefore, new operational strategies that aim to increase the flexibility of EDSs must be thought of and developed. This action is indispensable so that EDSs can seamlessly accommodate large amounts of intermittent renewable power. One plausible strategy that is worth considering is operating distribution systems in a meshed topology. The aim of this work is, therefore, related to the prospects of gradually adopting such a strategy. The analysis includes the additional level of flexibility that can be provided by operating distribution grids in a meshed manner, and the utilization level of variable renewable power. The distribution operational problem is formulated as a mixed integer linear programming approach in a stochastic framework. Numerical results reveal the multi-faceted benefits of operating distribution grids in a meshed manner. Such an operation scheme adds considerable flexibility to the system and leads to a more efficient utilization of variable renewable energy source (RES)-based distributed generation.


2020 ◽  
Vol 12 (15) ◽  
pp. 6234 ◽  
Author(s):  
Sohail Sarwar ◽  
Hazlie Mokhlis ◽  
Mohamadariff Othman ◽  
Munir Azam Muhammad ◽  
J. A. Laghari ◽  
...  

In recent years significant changes in climate have pivoted the distribution system towards renewable energy, particularly through distributed generators (DGs). Although DGs offer many benefits to the distribution system, their integration affects the stability of the system, which could lead to blackout when the grid is disconnected. The system frequency will drop drastically if DG generation capacity is less than the total load demand in the network. In order to sustain the system stability, under-frequency load shedding (UFLS) is inevitable. The common approach of load shedding sheds random loads until the system’s frequency is recovered. Random and sequential selection results in excessive load shedding, which in turn causes frequency overshoot. In this regard, this paper proposes an efficient load shedding technique for islanded distribution systems. This technique utilizes a voltage stability index to rank the unstable loads for load shedding. In the proposed method, the power imbalance is computed using the swing equation incorporating frequency value. Mixed integer linear programming (MILP) optimization produces optimal load shedding strategy based on the priority of the loads (i.e., non-critical, semi-critical, and critical) and the load ranking from the voltage stability index of loads. The effectiveness of the proposed scheme is tested on two test systems, i.e., a 28-bus system that is a part of the Malaysian distribution network and the IEEE 69-bus system, using PSCAD/EMTDC. Results obtained prove the effectiveness of the proposed technique in quickly stabilizing the system’s frequency without frequency overshoot by disconnecting unstable non-critical loads on priority. Furthermore, results show that the proposed technique is superior to other adaptive techniques because it increases the sustainability by reducing the load shed amount and avoiding overshoot in system frequency.


Author(s):  
Magnus Askeland ◽  
Thorsten Burandt ◽  
Steven A. Gabriel

Abstract As the end-users increasingly can provide flexibility to the power system, it is important to consider how this flexibility can be activated as a resource for the grid. Electricity network tariffs is one option that can be used to activate this flexibility. Therefore, by designing efficient grid tariffs, it might be possible to reduce the total costs in the power system by incentivizing a change in consumption patterns. This paper provides a methodology for optimal grid tariff design under decentralized decision-making and uncertainty in demand, power prices, and renewable generation. A bilevel model is formulated to adequately describe the interaction between the end-users and a distribution system operator. In addition, a centralized decision-making model is provided for benchmarking purposes. The bilevel model is reformulated as a mixed-integer linear problem solvable by branch-and-cut techniques. Results based on both deterministic and stochastic settings are presented and discussed. The findings suggest how electricity grid tariffs should be designed to provide an efficient price signal for reducing aggregate network peaks.


2019 ◽  
Author(s):  
Magnus Askeland ◽  
Thorsten Burandt ◽  
Steven A. Gabriel

<div>As the end-users increasingly can provide flexibility to the power system, it is important to consider how this flexibility can be activated as a resource for the grid. Electricity network tariffs are one option that can be used to activate this flexibility. Therefore, by designing efficient grid tariffs, it might be possible to reduce the total costs in the power system by incentivizing a change in consumption patterns.</div><div><br></div><div>This paper provides a methodology for optimal grid tariff design under decentralized decision-making and uncertainty in demand, power prices, and renewable generation. A bilevel model is formulated to adequately describe the interaction between the end-users and a distribution system operator. In addition, a centralized decision-making model is provided for benchmarking purposes. The bilevel model is reformulated as a mixed-integer linear problem solvable by branch-and-cut techniques.</div><div><br></div><div>Results for a deterministic example and a stochastic case study are presented and discussed.</div>


2018 ◽  
Vol 19 (4) ◽  
pp. 346-355 ◽  
Author(s):  
Lukinskiy Valery ◽  
Lukinskiy Vladislav

Abstract The carried out studies show that from the point of view of the issue of efficiency increase of logistical systems, there are several key aspects. Firstly, choice of methods for managing the triad of logistics functions ‘inventory management - warehousing – transportation’, where the inventory management issues are considered as the most relevant ones. Secondly, there is recognized the need to move the studies of multi-level systems within the framework of the concept of supply chain management. Nowadays, supply chains, which are represented by the distribution system, are widespread in practice. The most common of them are two-level ones with a central supplier at the second level and a certain number of companies at the first level; and multi-level systems of the distribution configuration network in which multi-nomenclature stocks are located. The article is devoted to the design and enhancement of analytical platform for inventory management in such distribution systems.


Sign in / Sign up

Export Citation Format

Share Document