scholarly journals Investigation of Heat Pump Operation Strategies with Thermal Storage in Heating Conditions

Energies ◽  
2017 ◽  
Vol 10 (12) ◽  
pp. 2020 ◽  
Author(s):  
Wangsik Jung ◽  
Dongjun Kim ◽  
Byung Kang ◽  
Young Chang
2021 ◽  
Vol 13 (13) ◽  
pp. 7200
Author(s):  
Alessandro Franco ◽  
Carlo Bartoli ◽  
Paolo Conti ◽  
Daniele Testi

The paper provides results from a hardware-in-the-loop experimental campaign on the operation of an air-source heat pump (HP) for heating a reference dwelling in Pisa, Italy. The system performances suffer from typical oversizing of heat emission devices and high water-supply temperature, resulting in HP inefficiencies, frequent on-off cycles, and relevant thermal losses on the hydronic loop. An experimentally validated HP model under different supply temperatures and part-load conditions is used to simulate the installation of a thermal storage between heat generator and emitters, in both series and parallel arrangements. Results relative to a typical residential apartment show that the presence of the thermal storage in series configuration ensures smoother heat pump operation and energy performance improvement. The number of daily on-off cycles can be reduced from 40 to 10, also saving one-third of electric energy with the same building loads. Preliminary guidelines are proposed for correctly sizing the tank in relation to the HP capacity and the average daily heating load of the building. A storage volume of about 70 L for each kilowatt of nominal heating capacity is suggested.


2016 ◽  
Author(s):  
Gabriel Agila ◽  
Guillermo Soriano

This research develops a detailed model for a Water to Water Heat Pump Water Heater (HPWH), operating for heating and cooling simultaneously, using two water storage tanks as thermal deposits. The primary function of the system is to produce useful heat for domestic hot water services according to the thermal requirements for an average household (two adults and one child) in the city of Quito, Ecuador. The purpose of the project is to analyze the technical and economic feasibility of implementing thermal storage and heat pump technology to provide efficient thermal services and reduce energy consumption; as well as environmental impacts associated with conventional systems for residential water heating. An energy simulation using TRNSYS 17 is carried to evaluate model operation for one year. The purpose of the simulation is to assess and quantifies the performance, energy consumption and potential savings of integrating heat pump systems with thermal energy storage technology, as well as determines the main parameter affecting the efficiency of the system. Finally, a comparative analysis based on annual energy consumption for different ways to produce hot water is conducted. Five alternatives were examined: (1) electric storage water heater; (2) gas fired water heater; (3) solar water heater; (4) air source heat pump water heater; and (5) a heat pump water heater integrated with thermal storage.


2017 ◽  
Vol 115 ◽  
pp. 393-405 ◽  
Author(s):  
Fang Liu ◽  
Weiquan Zhu ◽  
Yang Cai ◽  
Eckhard A. Groll ◽  
Jianxing Ren ◽  
...  

2010 ◽  
Vol 30 (8-9) ◽  
pp. 1073-1077 ◽  
Author(s):  
N. Pardo ◽  
Á. Montero ◽  
J. Martos ◽  
J.F. Urchueguía

Sign in / Sign up

Export Citation Format

Share Document