scholarly journals Passive Fuel Cell Heat Recovery Using Heat Pipes to Enhance Metal Hydride Canisters Hydrogen Discharge Rate: An Experimental Simulation

Energies ◽  
2018 ◽  
Vol 11 (4) ◽  
pp. 915 ◽  
Author(s):  
Anggito P. Tetuko ◽  
Bahman Shabani ◽  
John Andrews
2020 ◽  
Vol 213 ◽  
pp. 112864
Author(s):  
Jing Yao ◽  
Pengfei Zhu ◽  
Chenhui Qian ◽  
Usamah Hamidullah ◽  
Sandra Kurko ◽  
...  

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Gunabal S

Waste heat recovery systems are used to recover the waste heat in all possible ways. It saves the energy and reduces the man power and materials. Heat pipes have the ability to improve the effectiveness of waste heat recovery system. The present investigation focuses to recover the heat from Heating, Ventilation, and Air Condition system (HVAC) with two different working fluids refrigerant(R410a) and nano refrigerant (R410a+Al2O3). Design of experiment was employed, to fix the number of trials. Fresh air temperature, flow rate of air, filling ratio and volume of nano particles are considered as factors. The effectiveness is considered as response. The results were analyzed using Response Surface Methodology


2019 ◽  
Vol 198 ◽  
pp. 111842
Author(s):  
Xin Zhang ◽  
Jianying Du ◽  
Yee Sin Ang ◽  
Jincan Chen ◽  
Lay Kee Ang

2012 ◽  
Vol 622-623 ◽  
pp. 1162-1167
Author(s):  
Han Fei Tuo

In this study, energetic based fluid selection for a solid oxide fuel cell-organic rankine combined power system is investigated. 9 dry organic fluids with varied critical temperatures are chosen and their corresponding ORC cycle performances are evaluated at different turbine inlet temperatures and exhaust gas temperature (waste heat source) from the upper cycle. It is found that actual ORC cycle efficiency for each fluid strongly depends on the waste heat recovery performance of the heat recovery vapor generator. Exhaust gas temperature determines the optimal fluid which yields the highest efficiency.


Author(s):  
Giulio Vialetto ◽  
Marco Noro ◽  
Masoud Rokni

In this paper, a new heat recovery for a microcogeneration system based on solid oxide fuel cell and air source heat pump (HP) is presented with the main goal of improving efficiency on energy conversion for a residential building. The novelty of the research work is that exhaust gases after the fuel cell are first used to heat water for heating/domestic water and then mixed with the external air to feed the evaporator of the HP with the aim of increasing energy efficiency of the latter. This system configuration decreases the possibility of freezing of the evaporator as well, which is one of the drawbacks for air source HP in Nordic climates. A parametric analysis of the system is developed by performing simulations varying the external air temperature, air humidity, and fuel cell nominal power. Coefficient of performance (COP) can increase more than 100% when fuel cell electric power is close to its nominal (50 kW), and/or inlet air has a high relative humidity (RH) (close to 100%). Instead, the effect of mixing the exhausted gases with air may be negative (up to −25%) when fuel cell electric power is 20 kW and inlet air has 25% RH. Thermodynamic analysis is carried out to prove energy advantage of such a solution with respect to a traditional one, resulting to be between 39% and 44% in terms of primary energy. The results show that the performance of the air source HP increases considerably during cold season for climates with high RH and for users with high electric power demand.


Author(s):  
Michael Ozeh ◽  
A. G. Agwu Nnanna

Powering small electronics like mobile devices off-grid has remained a challenge; hence, there exists a need for an alternate source of powering these devices. This paper examines the efficacy of a novel nanoparticle-immobilized polyethylene wick in maintaining sufficient thermal gradient across a thermoelectric generator to power these devices with energy from waste heat. The work examines several other heat exchangers including heat pipes and loop heat pipe setups. The experimental evidence reveals that the nanoparticle-immobilized polyethylene wick is capable of generating sufficient thermal potential resulting in 5V, which is the minimum voltage required to power small mobile devices. In the opinion of the authors, this is the first ever recorded account of utilizing waste heat to generate enough voltage to power a mobile device. Experiment demonstrated that the nanoparticle-immobilized polyethylene wick showed over 40% thermoelectric voltage generation increment over a plain polyethylene wick and a metal wick in a loop heat pipe setup.


Sign in / Sign up

Export Citation Format

Share Document