scholarly journals Marine Current Energy Converters to Power a Reverse Osmosis Desalination Plant

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2880 ◽  
Author(s):  
Jennifer Leijon ◽  
Johan Forslund ◽  
Karin Thomas ◽  
Cecilia Boström

Some countries are facing issues on freshwater and electricity production, which can be addressed with the use of renewable energy powered desalination systems. In the following study, a reverse osmosis desalination plant powered by marine current energy converters is suggested. The marine current energy converters are designed at Uppsala University in Sweden, specifically for utilizing low water speeds (1–2 m/s). Estimations on freshwater production for such a system, in South Africa, facing the Indian Ocean was presented and discussed. It is concluded that the desalination plant cannot by itself supply freshwater for a population all the time, due to periods of too low water speeds (<1 m/s), but for 75% of the time. By using ten marine current energy converters, each with a nominal power rating of 7.5 kW, combined with a reverse osmosis desalination plant and water storage capacity of 2800 m3, it is possible to cover the basic freshwater demand of 5000 people. More studies on the hydrokinetic resource of the Western Indian Ocean, system cost, technology development, environmental and social aspects are necessary for more accurate results.

2021 ◽  
pp. 014459872098662
Author(s):  
Salma Hazim ◽  
Abdelouahab Salih ◽  
Mourad Taha Janan ◽  
Ahmed El Ouatouati ◽  
Abdellatif Ghennioui

Generating electricity through renewable energies is growing increasingly to reduce the huge demand on electricity and the impact of fossil energies on the environment, the most common sources forms used are: the wind, the sun, the photovoltaic and the thermal, without forgetting hydropower by the bays of dams. Fortunately, 70% of our planet is covered by the seas and oceans, this area constitutes a huge potential for electricity production to be exploited. The scientific advances of recent years allow a better exploitation of these resources especially the marine current due to its reliability and predictability. The marine current energy is extracted using a hydrokinetic turbine (HKT) which transform the kinetic energy of water into an electrical energy. The exploitation of this resource needs in the first step the assessment of marine currents in the study area for implementing the HKT, and the second step is designing an adequate technology. The main goal of this study is the assessment of the marine current resource on the Moroccan Mediterranean coast to evaluate the suitable area to implement the HKT, and to determine the marine current speed intensities at different depths. As well as, to estimate an average potential existing in the site. Moreover, we will conduct a study based on the results of the assessment that was made to design a horizontal axis marine current turbine (HAMCT). Two hydrofoil profile were considered to design a HAMCT using the Blade Element Theory (BEM) and calculating their performances adapted to the site conditions Naca4415 and s8052. In addition, a comparison was made between this two HAMCT hydrofoil profile for deciding the best one for implementing in the studied area.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2772
Author(s):  
Vishwas Powar ◽  
Rajendra Singh

Plummeting reserves and increasing demand of freshwater resources have culminated into a global water crisis. Desalination is a potential solution to mitigate the freshwater shortage. However, the process of desalination is expensive and energy-intensive. Due to the water-energy-climate nexus, there is an urgent need to provide sustainable low-cost electrical power for desalination that has the lowest impact on climate and related ecosystem challenges. For a large-scale reverse osmosis desalination plant, we have proposed the design and analysis of a photovoltaics and battery-based stand-alone direct current power network. The design methodology focusses on appropriate sizing, optimum tilt and temperature compensation techniques based on 10 years of irradiation data for the Carlsbad Desalination Plant in California, USA. A decision-tree approach is employed for ensuring hourly load-generation balance. The power flow analysis evaluates self-sufficient generation even during cloud cover contingencies. The primary goal of the proposed system is to maximize the utilization of generated photovoltaic power and battery energy storage with minimal conversions and transmission losses. The direct current based topology includes high-voltage transmission, on-the-spot local inversion, situational awareness and cyber security features. Lastly, economic feasibility of the proposed system is carried out for a plant lifetime of 30 years. The variable effect of utility-scale battery storage costs for 16–18 h of operation is studied. Our results show that the proposed design will provide low electricity costs ranging from 3.79 to 6.43 ¢/kWh depending on the debt rate. Without employing the concept of baseload electric power, photovoltaics and battery-based direct current power networks for large-scale desalination plants can achieve tremendous energy savings and cost reduction with negligible carbon footprint, thereby providing affordable water for all.


2020 ◽  
Vol 53 (2) ◽  
pp. 16561-16568
Author(s):  
Mariam Elnour ◽  
Nader Meskin ◽  
Khlaed M. Khan ◽  
Raj Jain ◽  
Syed Zaidi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document