scholarly journals An Overview of Recent Developments in Biomass Pyrolysis Technologies

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3115 ◽  
Author(s):  
M. N. Uddin ◽  
Kuaanan Techato ◽  
Juntakan Taweekun ◽  
M. Mofijur ◽  
M. G. Rasul ◽  
...  

Biomass is a promising sustainable and renewable energy source, due to its high diversity of sources, and as it is profusely obtainable everywhere in the world. It is the third most important fuel source used to generate electricity and for thermal applications, as 50% of the global population depends on biomass. The increase in availability and technological developments of recent years allow the use of biomass as a renewable energy source with low levels of emissions and environmental impacts. Biomass energy can be in the forms of biogas, bio-liquid, and bio-solid fuels. It can be used to replace fossil fuels in the power and transportation sectors. This paper critically reviews the facts and prospects of biomass, the pyrolysis process to obtain bio-oil, the impact of different pyrolysis technology (for example, temperature and speed of pyrolysis process), and the impact of various reactors. The paper also discusses different pyrolysis products, their yields, and factors affecting biomass products, including the present status of the pyrolysis process and future challenges. This study concluded that the characteristics of pyrolysis products depend on the biomass used, and what the pyrolysis product, such as bio-oil, can contribute to the local economy. Finally, more research, along with government subsidies and technology transfer, is needed to tackle the future challenges of the development of pyrolysis technology.

2019 ◽  
Vol 21 (52) ◽  
pp. 520 ◽  
Author(s):  
Mihai Andronie ◽  
◽  
Violeta-Elena Simion ◽  
Elena Gurgu ◽  
Adrian Dijmģrescu ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1289
Author(s):  
M. Anwar H. Khan ◽  
Sophia Bonifacio ◽  
Joanna Clowes ◽  
Amy Foulds ◽  
Rayne Holland ◽  
...  

An accelerating global energy demand, paired with the harmful environmental effects of fossil fuels, has triggered the search for alternative, renewable energy sources. Biofuels are arguably a potential renewable energy source in the transportation industry as they can be used within current infrastructures and require less technological advances than other renewable alternatives, such as electric vehicles and nuclear power. The literature suggests biofuels can negatively impact food security and production; however, this is dependent on the type of feedstock used in biofuel production. Advanced biofuels, derived from inedible biomass, are heavily favoured but require further research and development to reach their full commercial potential. Replacing fossil fuels by biofuels can substantially reduce particulate matter (PM), carbon monoxide (CO) emissions, but simultaneously increase emissions of nitrogen oxides (NOx), acetaldehyde (CH3CHO) and peroxyacetyl nitrate (PAN), resulting in debates concerning the way biofuels should be implemented. The potential biofuel blends (FT-SPK, HEFA-SPK, ATJ-SPK and HFS-SIP) and their use as an alternative to kerosene-type fuels in the aviation industry have also been assessed. Although these fuels are currently more costly than conventional aviation fuels, possible reduction in production costs has been reported as a potential solution. A preliminary study shows that i-butanol emissions (1.8 Tg/year) as a biofuel can increase ozone levels by up to 6% in the upper troposphere, highlighting a potential climate impact. However, a larger number of studies will be needed to assess the practicalities and associated cost of using the biofuel in existing vehicles, particularly in terms of identifying any modifications to existing engine infrastructure, the impact of biofuel emissions, and their chemistry on the climate and human health, to fully determine their suitability as a potential renewable energy source.


2019 ◽  
Vol 122 ◽  
pp. 01001 ◽  
Author(s):  
Elena David ◽  
Janez Kopac ◽  
Adrian Armeanu ◽  
Violeta Niculescu ◽  
Claudia Sandru ◽  
...  

This paper presnts biomass as a renewable energy source and defines the resources as well as the ways through biomass energy is converted into fuels, the technologies used for extracting the energy from biomass as well as the advantages and disadvantages that appear by using of biomass as a energy source. In addition,it is known hydrogen is an important alternative energy vector and a bridge to a sustainable way fot the energy future. Hydrogen is an energy carrier and can be obtained by different production technologies from a large variety of primary energy sources. At present, many researches are focused on getting energy from biomass, a sustainable and non-polluting way to replace fossil fuels, because the biomass can be considered as the best option with high potential, which meets energy requirements and could insure fuel supply in the future. Biomass and residual biomass can be used to produce hydrogen rich gas sustainably. Biomass pyrolysis and gasification offers an efficiency and economical route for the renewable hydrogen production and this is also discussed in the paper.


2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Desmond Eseoghene Ighravwe ◽  
Moses Olubayo Babatunde

The mini-grid proliferation has helped to improve the current state of electricity supply in several rural areas in developing countries. This is due to the innovations in renewable energy technologies. The impact of this development is the establishment of mini-grid business. There is a need for mini-grid business owners to identify the most suitable energy source for a particular area. To achieve this, proper analysis of risks that impact mini-grid business operations is required for optimal energy source selection. The current study addresses this problem by proposing a conceptual framework that considered risk factors. The conceptual framework analysed scenarios where expected risk values are specified and not specified by decision-makers. This was achieved using fuzzy axiomatic design (FAD), intuitionistic entropy method, and TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) methods. The TOPSIS and FAD results were combined using WASPAS (weighted aggregated sum product assessment) method. The proposed conceptual framework was applied in sub-Sahara Africa, Lagos, Nigeria. During the application of the proposed framework, five renewable energy sources and thirteen types of risks were considered. Information from four decision-makers was used to demonstrate the applicability of the framework. The results obtained showed that unpredictable electricity demand and construction completion risks were identified as the least and most important risks for the selection of renewable energy sources for mini-grid, respectively. The FAD and TOPSIS methods identified wind and biomass energy as the best-ranked energy source for mini-grid business, respectively. The WASPAS method and the FAD results were the same.


2013 ◽  
Vol 145 ◽  
pp. 157-161 ◽  
Author(s):  
Ong Lu Ki ◽  
Alfin Kurniawan ◽  
Chun Xiang Lin ◽  
Yi-Hsu Ju ◽  
Suryadi Ismadji

2020 ◽  
Vol 4 (3) ◽  
pp. 1199-1207
Author(s):  
Amruta P. Kanakdande ◽  
Chandrahasya N. Khobragade ◽  
Rajaram S. Mane

The continuous rising demands and fluctuations in the prices of fossil fuels warrant searching for an alternative renewable energy source to manage the energy needs.


2020 ◽  
Vol 849 ◽  
pp. 47-52
Author(s):  
Siti Jamilatun ◽  
Aster Rahayu ◽  
Yano Surya Pradana ◽  
Budhijanto ◽  
Rochmadi ◽  
...  

Nowadays, energy consumption has increased as a population increases with socio-economic developments and improved living standards. Therefore, it is necessary to find a replacement for fossil energy with renewable energy sources, and the potential to develop is biofuels. Bio-oil, water phase, gas, and char products will be produced by utilizing Spirulina platensis (SPR) microalgae extraction residue as pyrolysis raw material. The purpose of this study is to characterize pyrolysis products and bio-oil analysis with GC-MS. Quality fuel is good if O/C is low, H/C is high, HHV is high, and oxygenate compounds are low, but aliphatic and aromatic are high. Pyrolysis was carried out at a temperature of 300-600°C with a feed of 50 grams in atmospheric conditions with a heating rate of 5-35°C/min, the equipment used was a fixed-bed reactor. The higher the pyrolysis temperature, the higher the bio-oil yield will be to an optimum temperature, then lower. The optimum temperature of pyrolysis is 550°C with a bio-oil yield of 23.99 wt%. The higher the pyrolysis temperature, the higher the H/C, the lower O/C. The optimum condition was reached at a temperature of 500°C with the values of H/C, and O/C is 1.17 and 0.47. With an increase in temperature of 300-600°C, HHV increased from 11.64 MJ/kg to 20.63 MJ/kg, the oxygenate compound decreased from 85.26 to 37.55 wt%. Aliphatics and aromatics increased, respectively, from 5.76 to 36.72 wt% and 1.67 to 6.67 wt%.


Sign in / Sign up

Export Citation Format

Share Document