scholarly journals Biofuel and Bioenergy Technology

Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 290 ◽  
Author(s):  
Wei-Hsin Chen ◽  
Keat Lee ◽  
Hwai Ong

Biomass is considered as a renewable resource because of its short life cycle, and biomass-derived biofuels are potential substitutes to fossil fuels [...]

Author(s):  
Ahmed I. Osman ◽  
Neha Mehta ◽  
Ahmed M. Elgarahy ◽  
Amer Al-Hinai ◽  
Ala’a H. Al-Muhtaseb ◽  
...  

AbstractThe global energy demand is projected to rise by almost 28% by 2040 compared to current levels. Biomass is a promising energy source for producing either solid or liquid fuels. Biofuels are alternatives to fossil fuels to reduce anthropogenic greenhouse gas emissions. Nonetheless, policy decisions for biofuels should be based on evidence that biofuels are produced in a sustainable manner. To this end, life cycle assessment (LCA) provides information on environmental impacts associated with biofuel production chains. Here, we review advances in biomass conversion to biofuels and their environmental impact by life cycle assessment. Processes are gasification, combustion, pyrolysis, enzymatic hydrolysis routes and fermentation. Thermochemical processes are classified into low temperature, below 300 °C, and high temperature, higher than 300 °C, i.e. gasification, combustion and pyrolysis. Pyrolysis is promising because it operates at a relatively lower temperature of up to 500 °C, compared to gasification, which operates at 800–1300 °C. We focus on 1) the drawbacks and advantages of the thermochemical and biochemical conversion routes of biomass into various fuels and the possibility of integrating these routes for better process efficiency; 2) methodological approaches and key findings from 40 LCA studies on biomass to biofuel conversion pathways published from 2019 to 2021; and 3) bibliometric trends and knowledge gaps in biomass conversion into biofuels using thermochemical and biochemical routes. The integration of hydrothermal and biochemical routes is promising for the circular economy.


2010 ◽  
Vol 97 (3) ◽  
pp. 395-404 ◽  
Author(s):  
Ann M. Hirsch ◽  
Angie Lee ◽  
Weimin Deng ◽  
Shirley C. Tucker
Keyword(s):  

Author(s):  
Soumith Kumar Oduru ◽  
Pasi Lautala

Transportation industry at large is a major consumer of fossil fuels and contributes heavily to the global greenhouse gas emissions. A significant portion of these emissions come from freight transportation and decisions on mode/route may affect the overall scale of emissions from a specific movement. It is common to consider several alternatives for a new freight activity and compare the alternatives from economic perspective. However, there is a growing emphasis for adding emissions to this evaluation process. One of the approaches to do this is through Life Cycle Assessment (LCA); a method for estimating the emissions, energy consumption and environmental impacts of the project throughout its life cycle. Since modal/route selections are often investigated early in the planning stage of the project, availability of data and resources for analysis may become a challenge for completing a detailed LCA on alternatives. This research builds on such detailed LCA comparison performed on a previous case study by Kalluri et al. (2016), but it also investigates whether a simplified LCA process that only includes emissions from operations phase could be used as a less resource intensive option for the analysis while still providing relevant outcomes. The detailed LCA is performed using SimaPro software and simplified LCA is performed using GREET 2016 model. The results are obtained in terms of Kg CO2 equivalents of GHG emissions. This paper introduces both detailed and simplified methodologies and applies them to a case study of a nickel and copper mine in the Upper Peninsula of Michigan. The analysis’ are done for three modal alternatives (two truck routes and one rail route) and for multiple mine lives.


Author(s):  
Leezna Saleem ◽  
Imran Ahmad Siddiqui ◽  
Intikhab Ulfat

Pakistan is the world's sixth most populous country, currently facing the worst energy crisis. Although rich in renewable resources, Pakistan's energy system relies mainly on fossil fuels and imported energy for its energy needs. This study aims to use an analytical hierarchy pro-cess to prioritize six renewable technologies for Pakistan, with four criteria and thirteen subcriteria. The results indicate that solar power is particularly well suited for Pakistan, as it gained 42% priority weightage in the final aggregation. Wind energy is ranked second with a priority weight of 24%, followed by hydro 13%, biomass 9%, ocean 8% and geothermal en-ergy 3%. Solar and wind energies accounted for nearly 66% of the total weightage. This result highlighted the significance of economic criteria for the selection of renewable technologies in Pakistan, with around 43% priority weightage. Environmental criteria gained 19% whereas socio-political criteria registered 14% and technical criteria 23% priority weightage. During the potential assessment of the research, it was concluded that although renewable resource development has not been allocated sufficient attention in Pakistan in the past, if the correct decisions are taken regarding the exploitation of these resources, this can remedy the country's hazardous dependence on fossil fuel and imported energy.


2016 ◽  
Vol 847 ◽  
pp. 366-373
Author(s):  
Chun Zhi Zhao ◽  
Meng Chi Huang ◽  
Yi Liu ◽  
Li Ping Ma

Plastic pipe is a kind of new pipeline material and its output has been increasing in recent years. It is still mainly used for water supply and drainage of buildings and municipal utility industry as well as for safe drinking in rural areas, about half of all plastic pipelines are used for buildings, and the proportion of these pipelines used in other fields is also increasing. Plastic pipeline system's influence on the environment within its life cycle is the focus of researches in recent years. Based on life cycle assessment (LCA), this paper assesses the common water supply and drainage pipelines (PPR, PE and PVC-U) for buildings for resource and energy consumption, non-renewable resource consumption (ADP) of pollution gas emission, greenhouse effect (GWP), acidification effect (AP) and eutrophication (EP) and inhalable inorganics (RI) generated in the process of life cycle from raw material exploitation to produce production and other environmental influence closely related to the national energy conservation and emission reduction policy. The result shows that the influence indexes of non-renewable resource consumption for functional unit of PPR pipe, PE pipe and PVC-U pipe are 2.22×10-5 Kg antimony eq./ kg, 1.51×10-5 Kg antimony eq./ kg, 6.82×10-6 Kg antimony eq./ kg; those of acidification effect are 1.92×10-2kg SO2 eq./ kg, 1.96×10-2g SO2 eq./ kg, 3.90×10-2kg SO2 eq./ kg; those of eutrophication are 2.39×10-3kg PO43-eq./ kg, 2.36×10-3kg PO43-eq./ kg, 3.40×10-3kg PO43-eq./ kg; those of inhalable inorganics are 6.46×10-3 kg PM2.5 eq./ kg, 6.30×10-3 kg PM2.5 eq./ kg, 1.91×10-2 kg PM2.5 eq./ kg; those of greenhouse effect are 3.72kg CO2 eq./ kg, 3.60kg CO2 eq./ kg, 7.93kg CO2 eq./ kg. This result shows that the environmental influence of PPR, PE and PVC-U pipes mainly depends on the raw materials required for producing pipes, so the key of plastic pipeline greening is to reduce the consumption of virgin resin. This investigation creates a database about plastic pipeline's influence on environment within its full life cycle for the purpose of laying a foundation for calculating intrinsic energy in a building, promoting selection of green building material, facilitating the realization of green building objective, and improving the knowledge of developer, constructor and user to potential influence of the pipeline system within its life cycle.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 80 ◽  
Author(s):  
Ricardo Ramírez-Villegas ◽  
Ola Eriksson ◽  
Thomas Olofsson

The aim of this study is to assess how the use of fossil and nuclear power in different renovation scenarios affects the environmental impacts of a multi-family dwelling in Sweden, and how changes in the electricity production with different energy carriers affect the environmental impact. In line with the Paris Agreement, the European Union has set an agenda to reduce greenhouse gas emissions by means of energy efficiency in buildings. It is estimated that by the year 2050, 80% of Europe’s population will be living in buildings that already exist. This means it is important for the European Union to renovate buildings to improve energy efficiency. In this study, eight renovation scenarios, using six different Northern European electricity mixes, were analyzed using the standard of the European Committee for Standardization for life cycle assessment of buildings. This study covers all life cycle steps from cradle to grave. The renovation scenarios include combinations of photovoltaics, geothermal heat pumps, heat recovery ventilation, and improvement of the building envelope. The results show that while in some electricity mixes a reduction in the global warming potential can be achieved, it can be at the expense of an increase in radioactive waste production, and, in mixes with a high share of fossil fuels, the global warming potential of the scenarios increases with time, compared with that of the original building. It also shows that in most electricity mixes, scenarios that reduce the active heat demand of the building end up in reducing both the global warming potential and radioactive waste, making them less sensitive to changes in the energy system.


Author(s):  
Jinju Kim ◽  
Harrison Kim

AbstractShort-life cycle products are frequently replaced and discarded despite being resource-intensive. The short life span and the low utilization rate of the end-of-life products cause severe environmental problems and waste of resources. In the case of short-life cycle products, a new generation of products is released sooner than other products, therefore there are the opportunities to have various generations of products during the remanufacturing process. The commonality between generations increases the intergenerational component compatibility, which increases the efficiency of the manufacturing and remanufacturing processes, while at the same time weakening the performance difference between generations. This paper proposes a mathematical model to investigate the effect of commonality among generations on the overall production process. Based on various given new generation product designs with different commonality, we aim to propose optimal production planning and pricing strategies to maximize the total profitability and investigate how the results vary according to the commonality strategies between product generations.


Sign in / Sign up

Export Citation Format

Share Document