scholarly journals Optimization of a Power Line Communication System to Manage Electric Vehicle Charging Stations in a Smart Grid

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1767 ◽  
Author(s):  
Sara Carcangiu ◽  
Alessandra Fanni ◽  
Augusto Montisci

In this paper, a procedure is proposed to design a power line communication (PLC) system to perform the digital transmission in a distributed energy storage system consisting of fleets of electric cars. PLC uses existing power cables or wires as data communication multicarrier channels. For each vehicle, the information to be transmitted can be, for example: the models of the batteries, the level of the charge state, and the schedule of charging/discharging. Orthogonal frequency division multiplexing modulation (OFDM) is used for the bit loading, whose parameters are optimized to find the best compromise between the communication conflicting objectives of minimizing the signal power, maximizing the bit rate, and minimizing the bit error rate. The off-line design is modeled as a multi-objective optimization problem, whose solution supplies a set of Pareto optimal solutions. At the same time, as many charging stations share part of the transmission line, the optimization problem includes also the assignment of the sub-carriers to the single charging stations. Each connection between the control node and a charging station has its own frequency response and is affected by a noise spectrum. In this paper, a procedure is presented, called Chimera, which allows one to solve the multi-objective optimization problem with respect to a unique frequency response, representing the whole set of lines connecting each charging station with the central node. Among the provided Pareto solutions, the designer will make the final decision based on the control system requirements and/or the hardware constraints.

2009 ◽  
Vol 131 (9) ◽  
Author(s):  
Rajesh Kudikala ◽  
Deb Kalyanmoy ◽  
Bishakh Bhattacharya

Shape control of adaptive structures using piezoelectric actuators has found a wide range of applications in recent years. In this paper, the problem of finding optimal distribution of piezoelectric actuators and corresponding actuation voltages for static shape control of a plate is formulated as a multi-objective optimization problem. The two conflicting objectives considered are minimization of input control energy and minimization of mean square deviation between the desired and actuated shapes with constraints on the maximum number of actuators and maximum induced stresses. A shear lag model of the smart plate structure is created, and the optimization problem is solved using an evolutionary multi-objective optimization algorithm: nondominated sorting genetic algorithm-II. Pareto-optimal solutions are obtained for different case studies. Further, the obtained solutions are verified by comparing them with the single-objective optimization solutions. Attainment surface based performance evaluation of the proposed optimization algorithm has been carried out.


Author(s):  
Rajesh Kudikala ◽  
Deb Kalyanmoy ◽  
Bishakh Bhattacharya

Shape control of adaptive structures using piezoelectric actuators has found a wide range of applications in recent years. In this paper, the problem of finding optimal distribution of piezoelectric actuators and corresponding actuation voltages for static shape control of a plate is formulated as a multi objective optimization problem. Two conflicting objectives: minimization of input control energy and minimization of mean square deviation between the desired and actuated shapes are considered with constraints on maximum number of actuators and maximum induced stresses. A shear lag model of the smart plate structure is created and the optimization problem is solved using an evolutionary multi-objective optimization (EMO) algorithm NSGA-II. Pareto-optimal solutions are obtained for different case studies. Further, the obtained solutions are verified by comparing with single-objective optimization solutions.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2775
Author(s):  
Tsubasa Takano ◽  
Takumi Nakane ◽  
Takuya Akashi ◽  
Chao Zhang

In this paper, we propose a method to detect Braille blocks from an egocentric viewpoint, which is a key part of many walking support devices for visually impaired people. Our main contribution is to cast this task as a multi-objective optimization problem and exploits both the geometric and the appearance features for detection. Specifically, two objective functions were designed under an evolutionary optimization framework with a line pair modeled as an individual (i.e., solution). Both of the objectives follow the basic characteristics of the Braille blocks, which aim to clarify the boundaries and estimate the likelihood of the Braille block surface. Our proposed method was assessed by an originally collected and annotated dataset under real scenarios. Both quantitative and qualitative experimental results show that the proposed method can detect Braille blocks under various environments. We also provide a comprehensive comparison of the detection performance with respect to different multi-objective optimization algorithms.


2021 ◽  
pp. 1-13
Author(s):  
Hailin Liu ◽  
Fangqing Gu ◽  
Zixian Lin

Transfer learning methods exploit similarities between different datasets to improve the performance of the target task by transferring knowledge from source tasks to the target task. “What to transfer” is a main research issue in transfer learning. The existing transfer learning method generally needs to acquire the shared parameters by integrating human knowledge. However, in many real applications, an understanding of which parameters can be shared is unknown beforehand. Transfer learning model is essentially a special multi-objective optimization problem. Consequently, this paper proposes a novel auto-sharing parameter technique for transfer learning based on multi-objective optimization and solves the optimization problem by using a multi-swarm particle swarm optimizer. Each task objective is simultaneously optimized by a sub-swarm. The current best particle from the sub-swarm of the target task is used to guide the search of particles of the source tasks and vice versa. The target task and source task are jointly solved by sharing the information of the best particle, which works as an inductive bias. Experiments are carried out to evaluate the proposed algorithm on several synthetic data sets and two real-world data sets of a school data set and a landmine data set, which show that the proposed algorithm is effective.


2021 ◽  
Vol 1 (4) ◽  
pp. 1-26
Author(s):  
Faramarz Khosravi ◽  
Alexander Rass ◽  
Jürgen Teich

Real-world problems typically require the simultaneous optimization of multiple, often conflicting objectives. Many of these multi-objective optimization problems are characterized by wide ranges of uncertainties in their decision variables or objective functions. To cope with such uncertainties, stochastic and robust optimization techniques are widely studied aiming to distinguish candidate solutions with uncertain objectives specified by confidence intervals, probability distributions, sampled data, or uncertainty sets. In this scope, this article first introduces a novel empirical approach for the comparison of candidate solutions with uncertain objectives that can follow arbitrary distributions. The comparison is performed through accurate and efficient calculations of the probability that one solution dominates the other in terms of each uncertain objective. Second, such an operator can be flexibly used and combined with many existing multi-objective optimization frameworks and techniques by just substituting their standard comparison operator, thus easily enabling the Pareto front optimization of problems with multiple uncertain objectives. Third, a new benchmark for evaluating uncertainty-aware optimization techniques is introduced by incorporating different types of uncertainties into a well-known benchmark for multi-objective optimization problems. Fourth, the new comparison operator and benchmark suite are integrated into an existing multi-objective optimization framework that features a selection of multi-objective optimization problems and algorithms. Fifth, the efficiency in terms of performance and execution time of the proposed comparison operator is evaluated on the introduced uncertainty benchmark. Finally, statistical tests are applied giving evidence of the superiority of the new comparison operator in terms of \epsilon -dominance and attainment surfaces in comparison to previously proposed approaches.


Author(s):  
Weijun Wang ◽  
Stéphane Caro ◽  
Fouad Bennis ◽  
Oscar Brito Augusto

For Multi-Objective Robust Optimization Problem (MOROP), it is important to obtain design solutions that are both optimal and robust. To find these solutions, usually, the designer need to set a threshold of the variation of Performance Functions (PFs) before optimization, or add the effects of uncertainties on the original PFs to generate a new Pareto robust front. In this paper, we divide a MOROP into two Multi-Objective Optimization Problems (MOOPs). One is the original MOOP, another one is that we take the Robustness Functions (RFs), robust counterparts of the original PFs, as optimization objectives. After solving these two MOOPs separately, two sets of solutions come out, namely the Pareto Performance Solutions (PP) and the Pareto Robustness Solutions (PR). Make a further development on these two sets, we can get two types of solutions, namely the Pareto Robustness Solutions among the Pareto Performance Solutions (PR(PP)), and the Pareto Performance Solutions among the Pareto Robustness Solutions (PP(PR)). Further more, the intersection of PR(PP) and PP(PR) can represent the intersection of PR and PP well. Then the designer can choose good solutions by comparing the results of PR(PP) and PP(PR). Thanks to this method, we can find out the optimal and robust solutions without setting the threshold of the variation of PFs nor losing the initial Pareto front. Finally, an illustrative example highlights the contributions of the paper.


Sign in / Sign up

Export Citation Format

Share Document