scholarly journals Experimental Investigation of Ventilation Performance of Different Air Distribution Systems in an Office Environment—Heating Mode

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1835 ◽  
Author(s):  
Arman Ameen ◽  
Mathias Cehlin ◽  
Ulf Larsson ◽  
Taghi Karimipanah

A vital requirement for all-air ventilation systems are their functionality to operate both in cooling and heating mode. This article experimentally investigates two newly designed air distribution systems, corner impinging jet (CIJV) and hybrid displacement ventilation (HDV) in comparison against a mixing type air distribution system. These three different systems are examined and compared to one another to evaluate their performance based on local thermal comfort and ventilation effectiveness when operating in heating mode. The evaluated test room is an office environment with two workstations. One of the office walls, which has three windows, faces a cold climate chamber. The results show that CIJV and HDV perform similar to a mixing ventilation in terms of ventilation effectiveness close to the workstations. As for local thermal comfort evaluation, the results show a small advantage for CIJV in the occupied zone. Comparing C2-CIJV to C2-CMV the average draught rate (DR) in the occupied zone is 0.3% for C2-CIJV and 5.3% for C2-CMV with the highest difference reaching as high as 10% at the height of 1.7 m. The results indicate that these systems can perform as well as mixing ventilation when used in offices that require moderate heating. The results also show that downdraught from the windows greatly impacts on the overall airflow and temperature pattern in the room.

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8130
Author(s):  
Ziwen Dong ◽  
Liting Zhang ◽  
Yongwen Yang ◽  
Qifen Li ◽  
Hao Huang

Stratified air distribution systems are commonly used in large space buildings. The research on the airflow organization of stratified air conditioners is deficient in terms of the analysis of multivariable factors. Moreover, studies on the coupled operation of stratified air conditioners and natural ventilation are few. In this paper, taking a Shanghai Airport Terminal departure hall for the study, air distribution and thermal comfort of the cross-section at a height of 1.6 m are simulated and compared under different working conditions, and the effect of natural ventilation coupling operation is studied. The results show that the air distribution is the most uniform and the thermal comfort is the best (predicted mean vote is 0.428, predicted percentage of dissatisfaction is 15.2%) when the working conditions are 5.9% air supply speed, 11 °C cooling temperature difference and 0° air supply angle. With the coupled operation of natural ventilation, the thermal comfort can be improved from Grade II to Grade I.


Solar Energy ◽  
2006 ◽  
Author(s):  
Kybum Jeong ◽  
Moncef Krarti ◽  
Zhiqiang Zhai

The partition air distribution systems evaluated in this study allow occupants to control the system mode (on/off) and the supply air velocity and direction with similar flexibility as occupants in automobiles. To find optimal specifications for the partition air distribution systems that are able to achieve comfortable micro-environment, a CFD modeling tool was used to simulate the airflow and thermal performance of the partition air distribution systems in a typical office space. By analyzing the distribution characteristics of indoor air temperature, air velocity and thermal comfort index, the study assessed the performance of the partition air distribution systems with different operating parameters. The simulation results were analyzed and evaluated to assess both occupant’s thermal comfort and system energy consumption. The study shows that space cooling energy can be reduced while maintaining acceptable indoor thermal comfort level using a partition air distribution system with a higher supply air temperature.


2011 ◽  
Vol 46 (7) ◽  
pp. 1415-1427 ◽  
Author(s):  
Son H. Ho ◽  
Luis Rosario ◽  
Muhammad M. Rahman

2016 ◽  
Vol 26 (10) ◽  
pp. 1382-1396 ◽  
Author(s):  
Eusébio Z. E. Conceição ◽  
Cristina I. M. Santiago ◽  
Hazim B. Awbi

This paper presents a comparative numerical study of different ceiling-mounted-localized air distribution systems placed above students in a virtual classroom in summer conditions. The influence of four different ceiling-mounted-localized air distribution systems, using vertical descendent jets, on the thermal comfort, local thermal discomfort, and air quality levels was numerically evaluated. The air distribution index, developed previously, was used for non-uniform environment. This index considers the thermal comfort level, air quality level, effectiveness for heat removal, and effectiveness for contaminant removal. Numerical simulations were conducted for a virtual classroom equipped with one of four different ceiling-mounted-localized air distribution systems and with 6 desks, 6 or 12 students, and 2 upper airflow outlets. Inlet air supply temperature of 20 and 24℃ and an outdoor air temperature of 28℃ were used. The simulation results show that the air supply system having a vertical air jet placed at 1.8 m above the floor level (Case III), and with an inlet area of 0.01 m2 and a supply air velocity of 3 m/s would represent the best option in comparison with other air supply methods. In general, the air distribution index value decreases with an increase in inlet air temperature and the number of occupants. The air distribution index values are highest for Case III representing a classroom with 6 or 12 occupants with an inlet air temperature of 20 or 24℃.


Buildings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 169
Author(s):  
Arman Ameen ◽  
Gasper Choonya ◽  
Mathias Cehlin

An experimental study was conducted in a room resembling an office in a laboratory environment. The study involved investigating the ability of corner-placed stratum ventilation in order to evaluate the ventilation’s effectiveness and local thermal comfort. At fixed positions, the air temperature, air velocity, turbulence intensity, and tracer gas decay measurements were carried out. The results show that corner-placed stratum ventilation behaves very similar to a mixing ventilation system when considering air change effectiveness. The performance of the system was better at lower supply air flow rates for heat removal effectiveness. For the heating cases, the draught rates were all very low, with the maximum measured value of 12%. However, for the cooling cases, the maximum draught rate was 20% and occurred at ankle level in the middle of the room.


2005 ◽  
Author(s):  
Son H. Ho ◽  
Luis Rosario ◽  
Muhammad M. Rahman

The study of human thermal comfort requires detailed information about distributions of air velocity, air temperature and relative humidity in an occupied zone. Air quality is related to the contaminant distributions and contaminant removal effectiveness in indoor environment. This paper presents an evaluation of thermal comfort and contaminant removal for an office setting with underfloor air distribution system by the use of computational fluid dynamics modeling. A typical single cubicle in a large office floor in steady state condition of airflow as well as heat and mass transfer is investigated for both cooling and heating scenarios. The model includes a typical cubicle in a large office floor with a chair, a desk with a personal computer on its top, and heat sources such as seated people, computer monitor and CPU, and lights. Air enters the occupied zone through an inlet located at the floor level supplying a vertical upward inflow. Five different locations of the inlet diffuser, three different inlet air speeds, and four different loads of heat loss through the floor slab in heating case scenario were considered. Distributions of velocity, temperature, relative humidity, and contaminant concentration in such cases were computed. The results were compared among various simulation cases and showed reasonable agreement with experimental data taken from related literature.


Sign in / Sign up

Export Citation Format

Share Document