scholarly journals Innovation in an Existing Backpressure Turbine for Ensure Better Sustainability and Flexible Operation

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2652 ◽  
Author(s):  
Aleš Hromádka ◽  
Martin Sirový ◽  
Zbyněk Martínek

Cogeneration power plants have already been operated in the Czech Republic for several decades. These cogeneration power plants have been mostly operated with original technologies. However, these original technologies have to be continuously innovated during the entire operation time. This paper is focused on one of the possible innovations, which could lead to better sustainability and improved flexibility of the cogeneration power plants. Backpressure turbines are still used in many cogeneration power plants. However, backpressure turbines are currently losing suitability for cogeneration power plants, because they always need sufficient heat demand for optimal operation. Backpressure turbines rapidly lose efficiency when facing a lack of heat demand, i.e., mostly in summer season. Currently, condensing turbines are a preferable option for cogeneration power plants, which generally achieve less effective operation, as condensing turbines are able to operate with optional heat demand. Therefore, backpressure turbines are often replaced by condensing turbines with regulated outputs. In spite of the current trend, this article will present an innovative topology, which retains the original backpressure turbine with the addition of the organic Rankine cycle for residual energy utilization.

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1598 ◽  
Author(s):  
Marcin Jankowski ◽  
Aleksandra Borsukiewicz

In the last decade, particular attention has been paid to the organic Rankine cycle (ORC) power plant, a technology that implements a classical steam Rankine cycle using low-boiling fluid of organic origin. Depending on the specific application and the choice of the designer, the ORC can be optimized using one or several criteria. The selected objectives reflect various system performance aspects, such as: thermodynamic, economic, environmental or other. In this study, a novel criterion called exergy utilization index (XUI) is defined and used to maximize the utilization of an energy source in the ORC system. The maximization of the proposed indicator is equivalent to bring the heat carrier outlet temperature to the ambient temperature as close as possible. In the studied case, the XUI is applied along with the total heat transfer area of the system, and the multi-objective optimization is performed in order to determine the optimal operating conditions of the ORC. Moreover, to reveal a relationship between the XUI and important ORC performance indicators, a parametric study is conducted. Based on the results, it has been found that high values of the XUI (~80%) correspond to optimal values of exergy-based indicators such as: exergy efficiency, waste exergy ratio, environmental effect factor or exergetic sustainability index. Furthermore, the values of the XUI = 60%–80% are associated with beneficial economic characteristics reflected in a low payback period (<11.3 years). When considering the ecological aspect, the maximization of XUI has resulted in minimization of exergy waste to the environment. In general, the simple formulation and straightforward meaning make the XUI a particularly useful indicator for the preliminary evaluation and design of the ORC. Furthermore, the comparative analysis with respect to other well-known performance indicators has shown that it has a potential to be successfully applied as the objective function in the optimization of ORC power plants.


Author(s):  
Sebastian Bahamonde ◽  
Matteo Pini ◽  
Carlo De Servi ◽  
Antonio Rubino ◽  
Piero Colonna

Widespread adoption of renewable energy technologies will arguably benefit from the availability of economically viable distributed thermal power conversion systems. For this reason, considerable efforts have been dedicated in recent years to R&D over mini-organic Rankine cycle (ORC) power plants, thus with a power capacity approximately in the 3–50 kW range. The application of these systems for waste heat recovery from diesel engines of long-haul trucks stands out because of the possibility of achieving economy of production. Many technical challenges need to be solved, as the system must be sufficiently efficient, light, and compact. The design paradigm is therefore completely different from that of conventional stationary ORC power plants of much larger capacity. A high speed turbine is arguably the expander of choice, if high conversion efficiency is targeted, thus high maximum cycle temperature. Given the lack of knowledge on the design of these turbines, which depends on a large number of constraints, a novel optimal design method integrating the preliminary design of the thermodynamic cycle and that of the turbine has been developed. The method is applicable to radial inflow, axial and radial outflow turbines, and to superheated and supercritical cycle configurations. After a limited number of working fluids are selected, the feasible design space is explored by means of thermodynamic cycle design calculations integrated with a simplified turbine design procedure, whereby the isentropic expansion efficiency is prescribed. Starting from the resulting design space, optimal preliminary designs are obtained by combining cycle calculations with a 1D mean-line code, subject to constraints. The application of the procedure is illustrated for a test case: the design of turbines to be tested in a new experimental setup named organic rankine cycle hybrid integrated device (ORCHID) which is being constructed at the Delft University of Technology, Delft, The Netherlands. The first turbine selected for further design and construction employs siloxane MM (hexamethyldisiloxane, C6H18OSi2), supercritical cycle, and the radial inflow configuration. The main preliminary design specifications are power output equal to 11.6 kW, turbine inlet temperature equal to 300 °C, maximum cycle pressure equal to 19.9 bar, expansion ratio equal to 72, rotational speed equal to 90 krpm, inlet diameter equal to 75 mm, minimum blade height equal to 2 mm, degree of reaction equal to 0.44, and estimated total-to-static efficiency equal to 77.3%. Results of the design calculations are affected by considerable uncertainty related to the loss correlations employed for the preliminary turbine design, as they have not been validated yet for this highly unconventional supersonic and transonic mini turbine. Future work will be dedicated to the extension of the method to encompass the preliminary design of heat exchangers and the off-design operation of the system.


2013 ◽  
Vol 597 ◽  
pp. 45-50
Author(s):  
Sławomir Smoleń ◽  
Hendrik Boertz

One of the key challenges on the area of energy engineering is the system development for increasing the efficiency of primary energy conversion and use. An effective and important measure suitable for improving efficiencies of existing applications and allowing the extraction of energy from previously unsuitable sources is the Organic Rankine Cycle. Applications based on this cycle allow the use of low temperature energy sources such as waste heat from industrial applications, geothermal sources, biomass, fired power plants and micro combined heat and power systems.Working fluid selection is a major step in designing heat recovery systems based on the Organic Rankine Cycle. Within the framework of the previous original study a special tool has been elaborated in order to compare the influence of different working fluids on performance of an ORC heat recovery power plant installation. A database of a number of organic fluids has been developed. The elaborated tool should create a support by choosing an optimal working fluid for special applications and become a part of a bigger optimization procedure by different frame conditions. The main sorting criterion for the fluids is the system efficiency (resulting from the thermo-physical characteristics) and beyond that the date base contains additional information and criteria, which have to be taken into account, like environmental characteristics for safety and practical considerations.The presented work focuses on the calculation and optimization procedure related to the coupling heat source – ORC cycle. This interface is (or can be) a big source of energy but especially exergy losses. That is why the optimization of the heat transfer between the heat source and the process is (besides the ORC efficiency) of essential importance for the total system efficiency.Within the presented work the general calculation approach and some representative calculation results have been given. This procedure is a part of a complex procedure and program for Working Fluid Selection for Organic Rankine Cycle Applied to Heat Recovery Systems.


Author(s):  
Antonio Messineo ◽  
Domenico Panno ◽  
Roberto Volpe

Biomass can provide a reliable support for production of biofuels while contributing to sustainable management of natural resources. Many countries, including Italy, have introduced important incentive schemes to support the use of biomass for electricity, heat and transportation. This has raised considerable interest towards the use of biomass for energy generation purposes. Nonetheless, the design and installation of biomass-fuelled power plants present several critical issues, such as choice and availability of biomass, choice of technology, power plant localization and logistics. The case study tackled in this paper evaluates the economies originated by a 1MWel Organic Rankine Cycle (ORC) turbine coupled with a biomass fuelled boiler, installed in an area close to Palermo (Italy). A Geographical Information System (GIS) was used to localize the power plant and to optimize logistics. The thermodynamics of the plant as a whole were also analyzed. Finally, two different scenarios were simulated for project financial evaluation.


Author(s):  
Mahshid Vatani ◽  
Masoud Ziabasharhagh ◽  
Shayan Amiri

With the progress of technologies, engineers try to evaluate new and applicable ways to get high possible amount of energy from renewable resources, especially in geothermal power plants. One of the newest techniques is combining different types of geothermal cycles to decrease wastage of the energy. In the present article, thermodynamic optimization of different flash-binary geothermal power plants is studied to get maximum efficiency. The cycles studied in this paper are single and double flash-binary geothermal power plants of basic Organic Rankine Cycle (ORC), regenerative ORC and ORC with an Internal Heat Exchanger (IHE). The main gain due to using various types of ORC cycles is to determine the best and efficient type of the Rankine cycle for combined flash-binary geothermal power plants. Furthermore, in binary cycles choosing the best and practical working fluid is an important factor. Hence three different types of working fluids have been used to find the best one that gives maximum thermal and exergy efficiency of combined flash-binary geothermal power plants. According to results, the maximum thermal and exergy efficiencies both achieved in ORC with an IHE and the effective working fluid is R123.


Author(s):  
Vittorio Tola ◽  
Matthias Finkenrath

Reducing carbon dioxide (CO2) emissions from power plants utilizing fossil fuels is expected to become substantially more important in the near- to medium-term due to increasing costs associated to national and international greenhouse gas regulations, such as the Kyoto protocol and the European Union Emission Trading Scheme. However, since net efficiency penalties caused by capturing CO2 emissions from power plants are significant, measures to reduce or recover efficiency losses are of substantial interest. For a state-of-the-art 400 MW natural gas-fueled combined cycle (NGCC) power plant, post-combustion CO2 removal based on chemical solvents like amines is expected to reduce the net plant efficiency in the order of 9–12 percentage points at 90% overall CO2 capture. A first step that has been proposed earlier to improve the capture efficiency and reduce capture equipment costs for NGCC is exhaust gas recirculation (EGR). An alternative or complementary approach to increase the overall plant efficiency could be the recovery of available low temperature heat from the solvent-based CO2 removal systems and related process equipment. Low temperature heat is available in substantial quantities in flue gas coolers that are required upstream of the CO2 capture unit, and that are used for exhaust gas recirculation, if applied. Typical temperature levels are in the order of 80°C or up to 100 °C on the hot end. Additional low-grade heat sources are the amine condenser which operates at around 100–130 °C and the amine reboiler water cooling that could reach temperatures of up to 130–140°C. The thermal energy of these various sources could be utilized in a variety of low-temperature heat recovery systems. This paper evaluates heat recovery by means of an Organic Rankine Cycle (ORC) that — in contrast to traditional steam Rankine cycles — is able to convert heat into electricity efficiently even at comparably low temperatures. By producing additional electrical power in the heat recovery system, the global performance of the power plant can be further improved. This study indicates a theoretical entitlement of up to additional 1–1.5 percentage points in efficiency that could be gained by integrating ORC technology with a post-combustion capture system for natural gas combined cycles. The analysis is based on fundamental thermodynamic analyses and does not include an engineering- or component-level design and feasibility analysis. Different ORC configurations have been considered for thermal energy recovery at varying temperature levels from the above-mentioned sources. The study focuses on simultaneous low-grade heat recovery in a single ORC loop. Heat recovery options that are discussed include in series, in parallel or cascaded arrangements of heat exchangers. Different organic operating fluids, including carbon dioxide, R245fa, and N-butane were considered for the analysis. The ORC performance was evaluated for the most promising organic working fluid by a parametric study. Optimum cycle operating temperatures and pressures were identified in order to evaluate the most efficient approach for low temperature heat recovery.


2007 ◽  
Vol 129 (4) ◽  
pp. 355-362 ◽  
Author(s):  
A. McMahan ◽  
S. A. Klein ◽  
D. T. Reindl

Fundamental differences between the optimization strategies for power cycles used in “traditional” and solar-thermal power plants are identified using principles of finite-time thermodynamics. Optimal operating efficiencies for the power cycles in traditional and solar-thermal power plants are derived. In solar-thermal power plants, the added capital cost of a collector field shifts the optimum power cycle operating point to a higher-cycle efficiency when compared to a traditional plant. A model and method for optimizing the thermoeconomic performance of solar-thermal power plants based on the finite-time analysis is presented. The method is demonstrated by optimizing an existing organic Rankine cycle design for use with solar-thermal input. The net investment ratio (capital cost to net power) is improved by 17%, indicating the presence of opportunities for further optimization in some current solar-thermal designs.


Author(s):  
Aristide Massardd ◽  
Gian Marid Arnulfi

In this paper three Closed Combined Cycle (C3) systems for underwater power generation are analyzed. In the first, the waste heat rejected by a Closed Brayton Cycle (CBC) is utilized to heat the working fluid of a bottoming Rankine Cycle; in the second, the heat of a primary energy loop fluid is used to heat both CBC and Rankine cycle working fluids; the third solution involves a Metal Rankine Cycle (MRC) combined with an Organic Rankine Cycle (ORC). The significant benefits of the Closed Combined Cycle concepts, compared to the simple CBC system, such as efficiency increase and specific mass reduction, are presented and discussed. A comparison between the three C3 power plants is presented taking into account the technological maturity of all the plant components.


Sign in / Sign up

Export Citation Format

Share Document