scholarly journals Thyristor Arc Eliminator for Protection of Low Voltage Electrical Equipment

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2749 ◽  
Author(s):  
Karol Nowak ◽  
Jerzy Janiszewski ◽  
Grzegorz Dombek

The paper presents the layout of two opposing thyristors working as an Arc Eliminator (AE). The presented solution makes it possible to protect an electrical apparatus against the effects of an arcing fault. An Arc Eliminator is assumed to be a device cooperating with the protected apparatus. Thyristors were used because of their speed of operation and a relatively lower cost compared to other semiconductors with the same current-carrying capacity. The proposed solution, as one of the few currently available, makes it possible to eliminate the fault arc—both at short-circuit currents and current values to which overcurrent protections do not react. A test circuit was designed and made to study the effectiveness of the thyristor arc eliminator. A series of tests was carried out with variable impedance in the arc branch, including the influence of circuit inductance on arc time. It was found that the thyristor arc eliminator effectively protects devices powered from a low voltage power network against the effects of a fault or arc fault. The correctness of system operation for a wide range of impedance changes in the circuit feeding the arc location was demonstrated.

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 605
Author(s):  
Karol Nowak ◽  
Jerzy Janiszewski ◽  
Grzegorz Dombek

The paper presents a system of two oppositely connected multi-sectional thyristor branches. The system works as a multi-sectional arc eliminator (MSAE), protecting low-voltage electrical apparatus against the effects of an arcing fault. MSAE is designed to serve as a device cooperating with protected and secured electrical equipment. The use of thyristors in the proposed solution allows to obtain a high speed of operation, while multi-sectional thyristor branches significantly increase the permissible current load of the arc eliminator. A test circuit was designed and made to test the performance effectiveness of the multi-sectional thyristor arc eliminator. A number of tests were carried out with variable current values in the arc branch, taking into account the influence of thyristor conduction voltage and different thyristor gate release times. It was found that the multi-section thyristor arc eliminator system effectively protects devices powered from low voltage power network against the effects of interference or arc fault.


2020 ◽  
Vol 220 ◽  
pp. 01011
Author(s):  
Igor Nikolaevich Fomin ◽  
Roman Pavlovich Belikov ◽  
Tatyana Anatolyevna Kudinova ◽  
Nailya Kamilevna Miftakhova

Circuit breakers with automatic transfer switches (ATS) are designed in such a way that when the voltage disappears during a short-circuit (SC) in the ring network line, the ATS device is triggered. At the same time, its switch is turned on at short-circuit, then it is turned off with acceleration. Even a shortterm switching on of the automatic transfer switch for a sustained short-circuit leads to emergency situations [1,2]. The electrical equipment of the ring network spare line is exposed to high emergency short-circuit currents, and the consumers powered by the spare transformer are turned off. It is possible to minimize and eliminate the damages caused by the above mentioned cases by inhibiting the switching on of the circuitbreaker of the automatic transfer switch.


2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000096-000103
Author(s):  
Yoann Dusé ◽  
Fabien Laplace ◽  
Nicolas Joubert ◽  
Xavier Montmayeur ◽  
Noureddine Zitouni ◽  
...  

We present in this paper two new products for high-temperature, low-voltage (2.8V to 5.5V) power management applications. The first product is an original implementation of a monolithic low dropout regulator (XTR70010), able to deliver up to 1A at 230°C with less than 1V of dropout. This new voltage regulator can source an output current level up to 1.5A. The regulated output voltage can be selected among 32 preset values from 0.5V to 3.6V in steps of 100mV, or it can be obtained with a pair of external resistors. The circuit integrates complex analog and digital control blocks providing state of the art features such as UVLO protection, chip enable control, soft start-up and soft shut-down, hiccup short-circuit protection, customer selectable thermal shut-down, input power supply protection, output overshoot remover and stability over an extremely wide range of load capacitances. The circuit offers a fair ±2% absolute accuracy and is guaranteed latch-up free. The second product is an advanced high-temperature, low-power, digitally trimmable voltage reference (XTR75020). Thanks to a custom, 1-wire serial interface, the absolute precision and the temperature coefficient can be adjusted in order to obtain an accuracy better than 0.5% with a temperature coefficient bellow ±20ppm/°C. On-chip OTP memory for trimming of absolute value and temperature coefficient makes the circuit extremely accurate and almost insensitive to drifts over time and temperature. The circuit features a class AB output buffer able to source or sink up to 5mA and remains stable with any load capacitance up to 50μF. The XTR75020 has nine preset possible output voltages. The source and sink short circuit current always remains bellow 25mA. The quiescent current consumption is 300μA typical at 230°C while the standby current is, in all cases, under 20μA. Both devices are designed on a latch-up free silicon-on-insulator process.


Sign in / Sign up

Export Citation Format

Share Document