scholarly journals Catalytic Effect of Cobalt Additive on the Low Temperature Oxidation Characteristics of Changqing Tight Oil and Its SARA Fractions

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2848 ◽  
Author(s):  
Tengfei Wang ◽  
Jiexiang Wang

Air flooding is a potential enhanced oil recovery (EOR) method to economically and efficiently develop a tight oil reservoir due to its sufficient gas source and low operational costs, during which low temperature oxidation (LTO) is the key to ensuring the success of air flooding. In addition to inefficiency of conventional LTO, air flooding has seen its limited applications due to the prolonged reaction time and safety constraints. In this paper, a novel air injection technique based on the catalyst-activated low temperature oxidation (CLTO) is developed to improve the operational safety together with its oil recovery in tight oil reservoirs. Experimentally, static oxidation experiments are conducted to examine the influence of the catalyst on the LTO reaction kinetics of Changqing tight oil and its fractions. The catalytic oxidation characteristics are identified by applying a thermogravimetric analyzer coupled with Fourier transform infrared spectrometer (TG-FTIR) with respect to tight oil and its SARA (i.e., saturates, aromatics, resins, and asphaltenes) fractions. Accordingly, the catalyst can obviously decrease the LTO reaction activation energy of the Changqing tight oil and its SARA fraction. Cobalt additive can change the LTO reaction pathways of the SARA fractions, i.e., promoting the formation of hydroxyl-containing oxides and CO2 from the oxidation of saturates, aromatics and resins, while inhibiting the formation of ethers from the oxidation of aromatics and resins. The LTO of each SARA fraction contains both oxygen addition reaction and bond scission reaction that can be effectively promoted with the cobalt additive. The catalytic effect on the bond scission reaction is continuously enhanced and becomes gradually stronger than that on the oxygen addition reaction as the reaction proceeds.

2014 ◽  
Vol 962-965 ◽  
pp. 461-464
Author(s):  
Ping Yuan

In the later waterflooding sandstone reservoir, there are many serious development contradictions, especially in the aspects of water breakthrough and heterogeneous development. Based on the laboratory experiments, numerical simulation research on historical match of the low temperature oxidation kinetics model, the injection mode, foaming agent concentration, gas to liquid ratio, steam injection rate and other key parameters of air-foam flooding were carried out. The results show that, air foam flooding technology integrated comprehensive effect of low-temperature oxidation, air flooding and foam flooding, which enhance oil recovery nearly 8% by block the thief layer effectively and improving the swept volume. Air-foam flooding technology also can reduce the amount of water injection and water production, which improved the utilization rate of water resources and reduced output liquid processing cost. This technology shows its broad prospect of application and can provide reference for similar reservoirs.


2018 ◽  
Vol 36 (13) ◽  
pp. 937-943 ◽  
Author(s):  
Wan-Fen Pu ◽  
Shuai Zhao ◽  
Jing-Jun Pan ◽  
Zhi-Zhong Lin ◽  
Ru-Yan Wang ◽  
...  

2020 ◽  
Vol 690 ◽  
pp. 178690
Author(s):  
Shuai Zhao ◽  
Wanfen Pu ◽  
Mikhail A. Varfolomeev ◽  
Hao Ren ◽  
Ai Kenjiang ◽  
...  

2013 ◽  
Vol 27 (2) ◽  
pp. 780-786 ◽  
Author(s):  
Zhenya Chen ◽  
Lei Wang ◽  
Qiong Duan ◽  
Liang Zhang ◽  
Shaoran Ren

Sign in / Sign up

Export Citation Format

Share Document