scholarly journals An Active Direct Cell-to-Cell Balancing Circuit in Continuous Current Mode for Series Connected Batteries

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3978 ◽  
Author(s):  
Han ◽  
Yang ◽  
Liu ◽  
Yang

Bi-directional cell-to-cell balancing circuits can well prevent voltage imbalance of batteries that are connected in series. However, it is a challenge to achieve high equalization speed and equalization efficiency with low complex circuit structure. In order to overcome this challenge, it is proposed that a direct bi-directional cell-to-cell active equalization method that works in continuous current mode (CCM) is used. The proposed balancing circuit allows energy to transfer directly from the source cell to the target cell in one step, which guarantees high balancing speed and efficiency. The experiments in which six-20 Ah lithium-ion batteries are connected in series have been carried out, and the results show that the balancing circuit achieves a good comprehensive performance of equalization in efficiency, speed, and circuit complexity.

2020 ◽  
Vol 10 (4) ◽  
pp. 39
Author(s):  
Maziar Rastmanesh ◽  
Ezz El-Masry ◽  
Kamal El-Sankary

Photo-voltaic (PV) power harvest can have decent efficiency when dealing with high power. When operating with a DC–DC boost converter during the low-power harvest, its efficiency and output voltage are degraded due to excessive losses in the converter components. The objective of this paper is to present a systematic approach to designing an efficient low-power photo-voltaic harvesting topology with an improved efficiency and output voltage. The proposed topology uses a boost converter with and extra inductor in recycled and synchro-recycled techniques in continuous current mode (CCM). By exploiting the non-linearity of the PV cell, it reduces the power loss and using the current stored in the second inductor, it enhances the output voltage and output power simultaneously. Further, by utilizing the Metal Oxide Silicon Field Effect Transistor’s (MOSFET) body diode as a switch, it maintains a minimum hardware, and introduces a negligible impact on the reliability. The test results of the proposed boost converters show that it achieves a decent power and output voltage. Theoretical and experimental results of the proposed topologies with a tested prototype are presented along with a strategy to maximize power and voltage conversion efficiencies and output voltage.


2016 ◽  
Vol 9 (4) ◽  
pp. 710-718 ◽  
Author(s):  
Federico Martin Ibanez ◽  
Jose Martin Echeverria ◽  
Daniel Astigarraga ◽  
Luis Fontan

Author(s):  
Thiruvonasundari Duraisamy ◽  
Deepa Kaliyaperumal

The shrink in accessibility of petroleum products and increment in asset request are eventual outcomes for Electrical Vehicles (EVs). The battery has an impact on the performance of electrical vehicles, the driving range. Lithium ion (Li-ion) chemistry is extremely sensitive to overcharge and deep discharge, which can harm the battery, shortening its period of time, and even inflicting risky things. The Battery Management System (BMS) comprises of the consequent parts: management, equalization and protection. Of the three components, equalization is that the most crucial with respect to the durability of the battery framework. The ability of the full pack diminishes rapidly amid the procedure which leads to degradation of the full battery framework. This condition is extreme once the battery incorporates a more number of cells in series and frequent charging is conveyed through the battery string. The cell imbalance during charging, discharging is a major issue in battery systems used in EVs. To circumvent the cell imbalance, cell balancing is used. Cell balancing enhances battery safety and extends battery life. This paper discusses about different active balancing method to increase the life span of the battery module. Based on the comparison, the inductor based balancing method for 60V battery system is implemented in the MATLAB/Simscape environment and the results are discussed.


In order to analyze the bifurcation and chaos of Superbuck converter in Continuous Current Mode (CCM), a new method of time-frequency diagram based on Wigner-Ville distribution is proposed. The method is used to analyze the variation of the energy component of the output voltage with frequency and time. It reveals that the Superbuck converter exhibits period-1 bifurcation, period-2 bifurcation, period-4 bifurcation and chaos under different reference current. The results of the time-frequency diagram are consistent with the results of the bifurcation diagram, time-domain diagram, phase diagram and Poincare section. It proves that the method can deeply understand the nature of bifurcation and chaos in Superbuck converter, and it provides a new way to analyze the nonlinear phenomena of DC-DC converter


Sign in / Sign up

Export Citation Format

Share Document