scholarly journals Design of a Continuous Signal Generator Based on Sliding Mode Control of Three-Phase AC-DC Power Converters

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4468
Author(s):  
Alsmadi ◽  
Chairez ◽  
Utkin

In recent years, hundreds of technical papers have been published which describe the use of sliding mode control (SMC) techniques for power electronic equipment and electrical drives. SMC with discontinuous control actions has the potential to circumvent parameter variation effects with low implementation complexity. The problem of controlling time-varying DC loads has been studied in literature if three-phase input voltage sources are available. The conventional approach implies the design of a three-phase AC/DC converter with a constant output voltage. Then, an additional DC/DC converter is utilized as an additional stage in the output of the converter to generate the required voltage for the load. A controllable AC/DC converter is always used to have a high quality of the consumed power. The aim of this study is to design a controlled continuous signal generator based on the sliding mode control of a three-phase AC-DC power converter, which yields the production of continuous variations of the output DC voltage. A sliding mode current tracking system is designed with reference phase currents proportional to the source voltage. The proportionality time-varying gain is selected such that the output voltage is equal to the desired time function. The proposed new topology also offers the capability to get rid of the additional DC/DC power converter and produces the desired time-varying control function in the output of AC/DC power converter. The effectiveness of the proposed control design is demonstrated through a wide range of MATLAB/Simulink simulations.

Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 185 ◽  
Author(s):  
Grzegorz Tarchała ◽  
Teresa Orłowska-Kowalska

Sliding mode control (SMC) of electric drives constitutes a very popular control method for nonlinear multivariable and time-varying systems, e.g., induction motor (IM) drives. Nowadays, IM are the most popular electrical machines (EM) applied in many industrial applications as motion control devices, including electrical and hybrid vehicles. Nowadays, the control systems of EM are mostly realized using digital techniques (microprocessors and microcontrollers). Therefore, all control algorithms should be discretized or the whole control system should be designed in the discrete-time domain. This paper deals with a discrete-time sliding mode control (DSMC) for IM drives. The discrete algorithms for sliding mode control of the motor speed and rotor flux are derived in detail and next tested in simulation research. The simulation tests include the discrete nature of the power converter supplying the IM and present excellent performance of the developed control structure. To obtain the rotor speed regulation invariant to external disturbances, like load torque or inertia, especially during the reaching phase of the switching line, the discrete version of a time-varying switching line was introduced. It is shown that the assumed dynamics of the IM flux and speed is achieved and the proposed control algorithm can be realized using commonly available microcontrollers. The paper is illustrated with comprehensive simulation results for 1.5 kW IM drive, which are verified by experimental tests.


2021 ◽  
Vol 9 (1) ◽  
pp. 127-137
Author(s):  
Muhammad Jamshed Abbas ◽  
Sohail Khalid ◽  
Muhammad Awais ◽  
Muhammad Abdul Rahman ◽  
Samir Brahim Belhaouari

2021 ◽  
Vol 111 ◽  
pp. 106549
Author(s):  
Jianhua Wang ◽  
Liang Han ◽  
Xiwang Dong ◽  
Qingdong Li ◽  
Zhang Ren

Sign in / Sign up

Export Citation Format

Share Document