scholarly journals Effects of Temperature on the Flow and Heat Transfer in Gel Fuels: A Numerical Study

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 821
Author(s):  
Qin-Liu Cao ◽  
Wei-Tao Wu ◽  
Wen-He Liao ◽  
Feng Feng ◽  
Mehrdad Massoudi

In general, rheological properties of gelled fuels change dramatically when temperature changes. In this work, we investigate flow and heat transfer of water-gel in a straight pipe and a tapered injector for non-isothermal conditions, which mimic the situations when gelled fuels are used in propulsion systems. The gel-fluid is modeled as a non-Newtonian fluid, where the viscosity depends on the shear rate and the temperature; a correlation fitted with experimental data is used. For the fully developed flow in a straight pipe with heating, the mean apparent viscosity at the cross section when the temperature is high is only 44% of the case with low temperature; this indicates that it is feasible to control the viscosity of gel fuel by proper thermal design of pipes. For the flow in the typical tapered injector, larger temperature gradients along the radial direction results in a more obvious plug flow; that is, when the fuel is heated the viscosity near the wall is significantly reduced, but the effect is not obvious in the area far away from the wall. Therefore, for the case of the tapered injector, as the temperature of the heating wall increases, the mean apparent viscosity at the outlet decreases first and increases then due to the high viscosity plug formed near the channel center, which encourages further proper design of the injector in future. Furthermore, the layer of low viscosity near the walls plays a role similar to lubrication, thus the supply pressure of the transport system is significantly reduced; the pressure drop for high temperature is only 62% of that of low temperature. It should be noticed that for a propellent system the heating source is almost free; therefore, by introducing a proper thermal design of the transport system, the viscosity of the gelled fuel can be greatly reduced, thus reducing the power input to the supply pressure at a lower cost.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhanwei Liu ◽  
Xinyu Li ◽  
Tenglong Cong ◽  
Rui Zhang ◽  
Lingyun Zheng ◽  
...  

The prediction of flow and heat transfer characteristics of liquid sodium with CFD technology is of significant importance for the design and safety analysis of sodium-cooled fast reactor. The accuracies and uncertainties of the CFD models should be evaluated to improve the confidence of the numerical results. In this work, the uncertainties from the turbulent model, boundary conditions, and physical properties for the flow and heat transfer of liquid sodium were evaluated against the experimental data. The results of uncertainty quantization show that the maximum uncertainties of the Nusselt number and friction coefficient occurred in the transition zone from the inlet to the fully developed region in the circular tube, while they occurred near the reattachment point in the backward-facing step. Furthermore, in backward-facing step flow, the maximum uncertainty of temperature migrated from the heating wall to the geometric center of the channel, while the maximum uncertainty of velocity occurred near the vortex zone. The results of sensitivity analysis illustrate that the Nusselt number was negatively correlated with the thermal conductivity and turbulent Prandtl number, while the friction coefficient was positively correlated with the density and Von Karman constant. This work can be a reference to evaluate the accuracy of the standard k-ε model in predicting the flow and heat transfer characteristics of liquid sodium.


2004 ◽  
Vol 126 (2) ◽  
pp. 247-255 ◽  
Author(s):  
Duckjong Kim ◽  
Sung Jin Kim

In the present work, a compact modeling method based on a volume-averaging technique is presented. Its application to an analysis of fluid flow and heat transfer in straight fin heat sinks is then analyzed. In this study, the straight fin heat sink is modeled as a porous medium through which fluid flows. The volume-averaged momentum and energy equations for developing flow in these heat sinks are obtained using the local volume-averaging method. The permeability and the interstitial heat transfer coefficient required to solve these equations are determined analytically from forced convective flow between infinite parallel plates. To validate the compact model proposed in this paper, three aluminum straight fin heat sinks having a base size of 101.43mm×101.43mm are tested with an inlet velocity ranging from 0.5 m/s to 2 m/s. In the experimental investigation, the heat sink is heated uniformly at the bottom. The resulting pressure drop across the heat sink and the temperature distribution at its bottom are then measured and are compared with those obtained through the porous medium approach. Upon comparison, the porous medium approach is shown to accurately predict the pressure drop and heat transfer characteristics of straight fin heat sinks. In addition, evidence indicates that the entrance effect should be considered in the thermal design of heat sinks when Re Dh/L>∼O10.


Author(s):  
Sung Jin Kim ◽  
Dong-Kwon Kim

In the present study, three types of micro-sensors developed for experimental investigation of fluid flow and heat transfer in microstructures are introduced. The micro-sensors can be used to measure temperature distributions at the surface of a microstructure and mass flow rates passing through it. It is followed by a description of a method for modeling transport phenomena in microstructures is introduced. The modeling technique, based on the averaging method, is illustrated in thermal design and optimization of a microstructure.


Author(s):  
Jahed Hossain ◽  
Erik Fernandez ◽  
Christian Garrett ◽  
Jay Kapat

The present study aims to understand the flow, turbulence, and heat transfer in a single row narrow impingement channel for gas turbine heat transfer applications. Since the advent of several advanced manufacturing techniques, narrow wall cooling schemes have become more practical. In this study, the Reynolds number based on jet diameter was ≃15,000, with the jet plate having fixed jet hole diameters and hole spacing. The height of the channel is 3 times the impingement jet diameter. The channel width is 4 times the jet diameter of the impingement hole. The channel configuration was chosen such that the crossflow air is drawn out in the streamwise direction (maximum crossflow configuration). The impinging jets and the wall jets play a substantial role in removing heat in this kind of configuration. Hence, it is important to understand the evolution of flow and heat transfer in a channel of this configuration. The dynamics of flow and heat transfer in a single row narrow impingement channel are experimentally and numerically investigated. Particle Image Velocimetry (PIV) was used to reveal the detailed information of flow phenomena. The detailed PIV experiment was performed on this kind of impingement channel to satisfy the need for experimental data for this kind of impingement configuration, in order to validate turbulence models. PIV measurements were taken at a plane normal to the target wall along the jet centerline. The mean velocity field and turbulent statistics generated from the mean flow field were analyzed. The experimental data from the PIV reveals that flow is highly anisotropic in a narrow impingement channel. To support experimental data, wall-modeled Large Eddy Simulation (LES), and Reynolds Averaged Navier-Stokes (RANS) simulations (SST k-ω, v2–f, and Reynolds Stress Model (RSM)) were performed in the same channel geometry. The Wall-Adapting Local Eddy-viscosity SGS mdoel (WALE) [1] is used for the LES calculation. Mean velocities calculated from the RANS and LES were compared with the PIV data. Turbulent kinetic energy budgets were calculated from the experiment, and were compared with the LES and RSM model, highlighting the major shortcomings of RANS models to predict correct heat transfer behavior for the impingement problem. Temperature Sensitive Paint (TSP) was also used to experimentally obtain a local heat transfer distribution at the target and the side walls. An attempt was made to connect the complex aerodynamic flow behavior with results obtained from heat transfer, indicating heat transfer is a manifestation of flow phenomena. The accuracy of LES in predicting the mean flow field, turbulent statistics, and heat transfer is shown in the current work as it is validated against the experimental data through PIV and TSP.


2004 ◽  
Vol 126 (6) ◽  
pp. 924-930 ◽  
Author(s):  
Xundan Shi ◽  
J. M. Khodadadi

A finite-volume-based computational study of transient laminar flow and heat transfer (neglecting natural convection) within a lid-driven square cavity due to an oscillating thin fin is presented. The lid moves from left to right and a thin fin positioned perpendicular to the right stationary wall oscillates in the horizontal direction. The length of the fin varies sinusoidally with its mean length and amplitude equal to 10 and 5 percent of the side of the cavity, respectively. Two Reynolds numbers of 100 and 1000 for a Pr=1 fluid were considered. For a given convection time scale tconv, fin’s oscillation periods (τ) were selected in order to cover both slow τ/tconv>1 and fast τ/tconv<1 oscillation regimes. This corresponded to a Strouhal number range of 0.005 to 0.5. The number of the cycles needed to reach the periodic state for the flow and thermal fields increases as τ/tconv decreases for both Re numbers with the thermal field attaining the periodic state later than the velocity field. The key feature of the transient evolution of the fluid flow for the case with Re=1000 with slow oscillation is the creation, lateral motion and subsequent wall impingement of a CCW rotating vortex within the lower half of the cavity. This CCW rotating vortex that has a lifetime of about 1.5τ brings about marked changes to the temperature field within a cycle. The dimensionless time for the mean Nusselt numbers to reach their maximum or minimum is independent of the frequency of the fin’s oscillation and is dependent on the distance between the oscillating fin and the respective wall, and the direction of the primary CW rotating vortex. The phase lag angle between the oscillation of the fin and the mean Nusselt number on the four walls increases as the distance between the fin and the respective wall increases.


Author(s):  
Seungyeong Choi ◽  
Minho Bang ◽  
Kiwoong Kim ◽  
Yong-Ki Park ◽  
Hyung Hee Cho

Abstract Thermal design of dual circulating fluidized bed reactors for carbon dioxide (CO2) capture was carried out. To handle large heat duties for regeneration, a thin rectangular reactor was proposed. For feasible thermal design, the effect of varying reactor thickness on the gas-solid flow and heat transfer of the thin rectangular fluidized bed was investigated. Reactor thickness of 10, 30, and 60 mm was tested. Numerical simulations were conducted to analyze the pressure difference, solid particle hold-up distribution, particle velocity, granular temperature, and heat transfer in detail. According to our results, when the reactor is between 10 mm and 30 mm thick, a large solid hold-up occurs adjacent to the narrow wall. This causes a large pressure difference due to the wall effect. Furthermore, the particle velocities were analyzed to evaluate that there is the two-dimensional (2D) particle mixing behaviors. On the other hand, in the case of reactors with a thickness of 60 mm, tuning flows occur adjacent to the narrow wall. This reduced the pressure difference and the three-dimensional (3D) particle mixing behaviors. This difference in particle behavior affected heat transfer. In the case of reactor thicknesses between 10 mm and 30 mm, the heat transfer increased with the reactor thickness. In particular, the heat transfer at the narrow wall of the reactor with a thickness of 10 mm was extremely low due to the low particle mixing. On the other hand, there was more heat transfer with a thickness at the 60 mm wall, despite the low solid hold-up.


Author(s):  
Xundan Shi ◽  
J. M. Khodadadi

A finite-volume-based computational study of transient laminar flow and heat transfer (neglecting natural convection) within a lid-driven square cavity due to an oscillating thin fin is presented. The lid moves from left to right and a thin fin positioned perpendicular to the right stationary wall oscillates in the horizontal direction. The length of the fin varies sinusoidally with its mean length and amplitude equal to 10 and 5 percent of the side of the cavity, respectively. Two Reynolds numbers of 100 and 1000 with a Pr = 1 fluid were considered. For a given convection time scale (tconv), fin’s oscillation periods (τ) were selected in order to cover both slow (τ/tconv&gt;1) and fast (τ/tconv&lt;1) oscillation regimes. This corresponded to a Strouhal number range of 0.005 to 0.5. The number of the cycles needed to reach the periodic state for the flow and thermal fields increases as τ/tconv decreases for both Re numbers with the thermal field attaining the periodic state later than the velocity field. The key feature of the transient evolution of the fluid flow for the case with Re = 1000 with slow oscillation is the creation, lateral motion and subsequent wall impingement of a CCW rotating vortex within the lower half of the cavity. This CCW rotating vortex that has a lifetime of about 1.5τ brings about marked changes to the temperature field within a cycle. The dimensionless time for the mean Nusselt numbers to reach their maximum or minimum is independent of the frequency of the fin’s oscillation and dependent on the distance between the oscillating fin and the respective wall, and the direction of the primary CW rotating vortex. The phase lag angle between the oscillation of the fin and the mean Nusselt number on the four walls increases as the distance between the fin and the respective wall increases.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Jahed Hossain ◽  
Erik Fernandez ◽  
Christian Garrett ◽  
Jayanta Kapat

The present study aims to understand the flow, turbulence, and heat transfer in a single row narrow impingement channel for gas turbine heat transfer applications. Since the advent of several advanced manufacturing techniques, narrow wall cooling schemes have become more practical. In this study, the Reynolds number based on jet diameter was ≃15,000, with the jet plate having fixed jet hole diameters and hole spacing. The height of the channel is three times the impingement jet diameter. The channel width is four times the jet diameter of the impingement hole. The dynamics of flow and heat transfer in a single row narrow impingement channel are experimentally and numerically investigated. Particle image velocimetry (PIV) was used to reveal the detailed information of flow phenomena. PIV measurements were taken at a plane normal to the target wall along the jet centerline. The mean velocity field and the turbulent statistics generated from the mean flow field were analyzed. The experimental data from the PIV reveal that the flow is highly anisotropic in a narrow impingement channel. To support experimental data, wall-modeled large eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) simulations (shear stress transport k–ω, ν2−f, and Reynolds stress model (RSM)) were performed in the same channel geometry. Mean velocities calculated from the RANS and LES were compared with the PIV data. Turbulent kinetic energy budgets were calculated from the experiment, and were compared with the LES and RSM model, highlighting the major shortcomings of RANS models to predict correct heat transfer behavior for the impingement problem. Temperature-sensitive paint (TSP) was also used to experimentally obtain a local heat transfer distribution at the target and the side walls. An attempt was made to connect the complex aerodynamic flow behavior with the results obtained from heat transfer, indicating heat transfer is a manifestation of flow phenomena. The accuracy of LES in predicting the mean flow field, turbulent statistics, and heat transfer is shown in the current work as it is validated against the experimental data through PIV and TSP.


Sign in / Sign up

Export Citation Format

Share Document