scholarly journals Performance Characteristics of Single-Phase Self-Excited Induction Generators with an Iron Core of Various Non-Grain Oriented Electrical Sheets

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3166
Author(s):  
Krzysztof Makowski ◽  
Aleksander Leicht

This paper deals with the computation of the performance characteristics of the single-phase self-excited induction generator by field–circuit method. It presents and compares previously unpublished results—self-excitation and no-load characteristics of the generator for different rotor speeds, and complete load steady-state performance characteristics for various types of the core materials. The discrepancies between the performance characteristics of the generator for the catalog’s magnetization curves of different types of electrical sheets and for an actual magnetic core of the generator for self-excitation transients and load steady-state are presented. The results may be useful for designing new constructions of single-phase self-excited induction generators.

2004 ◽  
Vol 40 (2) ◽  
pp. 516-525 ◽  
Author(s):  
T.J.E. Miller ◽  
M. Popescu ◽  
C. Cossar ◽  
M. McGilp ◽  
G. Strappazzon ◽  
...  

Author(s):  
Aleksander Leicht ◽  
Krzysztof Makowski

Purpose The purpose of the paper is to present an analysis of an influence of shape and material of rotor bars on the process of self-excitation and performance characteristics of single-phase, self-excited induction generator (SP-SEIG). Design/methodology/approach The presented analysis is based on the results of transient simulations of SP-SEIG performed with the use of field-circuit model of the machine. Four various shapes of the rotor bars and two different conductor materials were investigated. The results for the base model with rounded trapezoidal rotor slots were validated by measurements. Findings An improvement of the performance characteristics – the extension of the stable operating range of the generator – was obtained for rectangular copper rotor bars. The improvement is the result of strong skin effect in the squirrel rotor cage. Application of round rotor slots results in shorter time of voltage build-up during the self-excitation of the generator caused by less apparent deep bar effect in round bars. Originality/value The originality of the paper is the application of the copper rotor cage in the single-phase, self-excited induction generator. Its use is beneficial, as it allows for extension of the range of stable operating range. The results may be used for designing new constructions of the single-phase, self-excited induction generators, as well as the constructions based on general purpose single-phase induction motors.


Author(s):  
Mathias Sta˚lek ◽  
Jo´zsef Ba´na´ti ◽  
Christophe Demazie`re

A Main Steam Line Break (MSLB) is an important transient for Pressurized Water Reactors (PWR) due to the strong positive reactivity introduced by the over-cooling of the core. Since this effect is stronger when the Moderator Temperature Coefficient (MTC) has a large amplitude, a conservative result will be obtained for a high burnup of the fuel due to the more negative MTC late in the cycle. The calculations have been performed at a cycle burnup of 12.9742 GWd/tHM. The Swedish Ringhals-3 PWR is a three loop Westinghouse design, currently with a thermal power of 3000 MW. The PARCS model has 157 fuel assemblies of 8 different types. Four different types of reflector are used. The cross sections, and kinetic data were obtained from CASMO-4 calculations, using a cross section interface developed at the department. There are 24 axial nodes, and 2×2 radial nodes for each assembly. The transient option for calculating the effect of poisoning was used. The PARCS model has been validated against steady-state measurements from Ringhals-3 of the Relative Power Fraction (RPF) and of the core criticality. The RELAP5 model has 157 channels for the core which means that there is a one to one correspondence between the thermal hydraulics model and the neutronics model. There is eight axial nodes. Originally, the intention was to have 24 axial nodes but this proved not to work because of some limitation in RELAP5. There is currently no mixing between the different channels in the core. The feedwater, and turbines are modelled as boundary conditions. The stand-alone RELAP5 model has been validated against steady state measurements from Ringhals-3. A number of different cases were considered. In the first case, both the isolation of the feedwater for the broken loop, and all the control rods were assumed to work properly. For the second case one of the control rods was assumed to be stuck. The stuck rod was located in the fuel assembly with the highest power. This rod has also one of the highest rod worths. In the final case, the feedwater control valve for the broken loop was fully open. None of the cases led to any recriticality. The increase in power for each fuel assembly was also investigated. With the control rod located in the assembly with the highest power, the maximum power increase before scram turned out to be about 25% compared to the initial power.


2013 ◽  
Vol 860-863 ◽  
pp. 2351-2355
Author(s):  
Jie Zhang ◽  
Hong Wei Ma

A PRE control scheme in single-phase inverter is adopted, namely connecting the proportional component with repetitive controller in parallel. This control scheme not only retains the characteristics of fast dynamic response from proportion link ,but also absorbs the advantages of no steady-state error in repetitive control .When the system is in stable operation condition, repetitive controller is used to resist periodic disturbance and thus improve the steady-state performance. Contrarily, the proportional component can feel mutation of input error and produce accommodation immediately to ensure the systems fast speed of response .The comprehensive theoretical analysis of this control strategy is given, and the system is designed in Matlab based on this theory, besides, the control scheme is achieved in the DSP platform by using digital control algorithm. Simulation and experimental results prove that the proposed scheme can achieve good dynamic and steady-state performance.


1985 ◽  
Vol 25 (01) ◽  
pp. 101-112 ◽  
Author(s):  
Stanley C. Jones

Jones, Stanley C., SPE, Marathon Oil Co. Abstract Displacements were conducted in Berea cores to gain insight into the mechanism of tertiary oil displacement and propagation by a micellar slug. Contrary to expectation, propagation by a micellar slug. Contrary to expectation, the first oil mobilized by micellar fluid was among the first oil (instead of the last oil) to be produced, giving the appearance of either viscous fingering or of unusually large dispersion. To eliminate the possibility of unfavorable mobility ratios caused by oil/water/surfactant interaction, we conducted several runs in which an injected hydrocarbon displaced another hydrocarbon, initially at residual saturation. In other experiments, water (the wetting phase) at irreducible saturation was displaced by a distinguishable injected aqueous phase. Injected hydrocarbon appeared in the produced fluids immediately after oil breakthrough, yielding behavior similar to the micellar-slug experiments. Even with a favorable viscosity ratio of less than 0.01, the apparent dispersion was huge. However, mixing zones in the wetting-phase displacements were quite normal and similar to those observed for single-phase flow. Nonwetting-phase fronts (injected hydrocarbon displacing resident hydrocarbon) are smeared much more than wetting-phase fronts because the entrance of hydrocarbon into smaller water-filled pore throats is delayed until the capillary entrance pressure is overcome by differences in the flowing oil and water pressure gradients. Oil might not be displaced from the smaller pores until long after oil breakthrough. Nonwetting-phase dispersion, which occurs in many EOR processes, can be expected to be one or two orders of magnitude greater than dispersion measured in single-phase-flow experiments. Entrance of the wetting phase, however, is not delayed; hence, wetting-phase Mixing zones are short. Introduction Experiments for this study were inspired by the question: How is residual oil, which has been mobilized by a micellar slug, transported? More specifically, does the first oil mobilized by a slug (near the injection end of a core) contact and mobilize oil downstream from it, which displaces more oil even farther downstream? If this were the case, the first oil to be produced would be the most-downstream oil (i.e., oil nearest the outlet). The last oil produced would be the first oil mobilized from the produced would be the first oil mobilized from the injection end of the core. This scheme is somewhat analogous to pushing a broom across a floor covered with a heavy layer of dust. The first dust encountered by the broom stays next to the broom. As the accumulated layer of dust in front of the broom becomes adequately compacted, it pushes dust ahead of it to from an ever-widening band or "dust bank" ahead of the broom. The dust farthest ahead of the broom is the first to be pushed into the dustpan, and the dust first encountered by the broom is the last to be pushed in. Or is this concept all wrong? Another model postulates that the oil first contacted by a micellar slug is mobilized and quickly travels away from the slug so that the downstream oil is contacted and mobilized by the slug, not by the first-mobilized oil. If this process were to proceed to its logical conclusion, the first-produced oil would proceed to its logical conclusion, the first-produced oil would be from the inlet end of the core, and the last-produced from the outlet end. Either of these two extremes would be modified by dispersion, which smears sharp fronts by mixing displaced and displacing fluids. Dispersion in porous media has been investigated extensively. Perkins and Johnston have reviewed several studies, mostly involving single-phase flow. The simultaneous injection of the water with light hydrocarbon solvents is a technique used to reduce solvent mobility and viscous fingering. Raimondi et al. performed steady-state experiments in which flowing performed steady-state experiments in which flowing water and oil were miscibly displaced by the simultaneous injection of water and solvent. They found that the longitudinal mixing coefficient for the hydrocarbon phase increased sharply with increasing water above the irreducible saturation. The displacement of the wetting phase was not greatly affected by the presence of the nonwetting phase. However, a large amount of oil that initially phase. However, a large amount of oil that initially seemed to be trapped by water was eventually recovered by continued solvent injection. Raimondi and Torcaso later found that some oil, particularly at high water-to-solvent injection ratios, was particularly at high water-to-solvent injection ratios, was trapped permanently, provided that injection rates, ratios, and pressure drops were unchanged in switching from water/oil to water/solvent injection. Fitzgerald and Nielsen also found that only part of the in-place crude was recovered by solvent injection. Moreover, solvent appeared in the effluent shortly after oil breakthrough. Oil recovery was further decreased when solvent and water were injected simultaneously. Thomas et al. reported slightly increased wetting-phase longitudinal mixing during simultaneous water/oil injection as the wetting-phase saturation decreased. Non-wetting-phase mixing increased substantially as the nonwetting-phase saturation decreased from 100%. SPEJ p. 101


2000 ◽  
Vol 123 (3) ◽  
pp. 608-615 ◽  
Author(s):  
Sergei B. Glavatskikh

The paper reports results of the experimental investigation into the steady state performance characteristics of a tilting pad thrust bearing typical of design in general use. Simultaneous measurements are taken of the pad and collar temperatures, the pressure distributions, oil film thickness, and power loss as a function of shaft speed, bearing load, and supplied oil temperature. The effect of operating conditions on bearing performance is discussed. A small radial temperature variation is observed in the collar. A reduction in minimum oil film thickness with load is approximately proportional to p−0.6, where p is an average bearing pressure. It has also been found that the oil film pressure profiles change not only due to the average bearing load but also with an increase in shaft speed and temperature of the supplied oil.


Sign in / Sign up

Export Citation Format

Share Document