scholarly journals Derivation of OCC Modulator for Grid-Tied Single-Stage Buck-Boost Inverter Operating in the Discontinuous Conduction Mode

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3168
Author(s):  
Ben Zhao ◽  
Yigeng Huangfu ◽  
Alexander Abramovitz

This paper is concerned with the derivation of a one-cycle controller for driving a single-stage buck-boost DC-AC micro-inverter in grid-tied applications. The topology under study is based on a full-bridge switch arrangement with no unfolder circuit. The proposed micro-inverter attains a high gain by applying a multi-winding tapped inductor and, therefore, can operate at grid-level voltage without using a DC-DC step-up stage. To minimize the switching loss, the proposed inverter is operated in the discontinuous conduction mode. The operation principles of the proposed topology in the discontinuous conduction mode are discussed and analyzed. Based on the analysis, the one-cycle control law and modulator circuitry needed to control the proposed micro-inverter are developed. The feasibility of the proposed modulation scheme is verified by simulation.

Solar Energy ◽  
2016 ◽  
Vol 139 ◽  
pp. 81-84 ◽  
Author(s):  
Ben Zhao ◽  
Alexander Abramovitz

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2588
Author(s):  
Sen-Tung Wu ◽  
Yu-Ting Cheng

This paper proposes an AC/DC single-stage structure by integrating a boost topology and an active clamp flyback (ACF) circuit with power-factor-correction (PFC) function. The PFC function can be achieved by controlling a boost PFC topology operated in the discontinuous conduction mode. With the coordination of active clamping components, a resonant technique is obtained and zero-voltage-switching (ZVS) can be achieved. The proposed converter is combined with the advantages of: (1) compared with two-stage circuit, a single stage circuit decreases the component of the main circuit and reduces the complexity of the control circuit; (2) a boost topology with PFC function operated in discontinuous conduction mode can be accomplished without adding any current detecting technique or detecting input signal; (3) by using the inductor from the PFC stage, ZVS function can be achieved without any additional inductor; (4) the increment of switching frequency facilitates the optimization of power density; (5) the conducting loss at the secondary side can be reduced by adding the synchronous rectification; (6) in this proposed scheme, the dual transformers with series-parallel connection are utilized, the current at the secondary side can be shared for lowering the conduction loss of the synchronous transistors. Finally, a prototype converter with AC 110 V input and DC 19 V/6.32 A (120 W) output under 300 kHz switching frequency is implemented. The efficiency of the proposed converter reaches 88.20% and 0.984 power factor in full load condition.


Author(s):  
Sathiyamoorthy S ◽  
Gopinath M

Power Factor Correction (PFC) has become one of the most active research areas in the field of power electronics due to the surplus power required for various industrial applications around the world. In this work, a novel SEPIC converter with the Tapped Inductor model operating in Discontinuous Conduction Mode (TI-SEPIC- DCM) is proposed for PFC. The proposed TI-SEPIC-DCM improves the voltage gain through voltage multiplier cell and charge pump circuit. The voltage multiplier cell also helps in attaining the Zero-Voltage Switching (ZVS) and Zero-Current Switching (ZCS), which results in higher switching frequency and size reduction. Moreover, a third order harmonic reduction control loop has been proposed for better harmonic mitigation. The proposed work has been simulated in MATLAB and the results are obtained to validate the significance of the proposed TI-SEPIC- DCM with near unity power factor and reduced harmonics.


2018 ◽  
Vol 28 (02) ◽  
pp. 1950030 ◽  
Author(s):  
Pradeep Vishnuram ◽  
Sridhar Ramasamy

Induction heating (IH) applications aided by power electronic control system have become very attractive in the recent past. The power electronics circuits succumb to severe switching loss, lower power density if proper switching methodology is not adhered. A state of uncertainty is indispensable in IH application as the power required by the load varies depending upon the nature of work piece. This uncertain issue makes the selection of the control algorithm and controller very vital. The mundane controllers may not be compatible to combat the uncertainties and leads to exhibit dynamic problems say transients, peak overshoot and poor response. Henceforth, the IH system requires a superlative converter topology and control scheme in order to have reduced switching loss and to improve the system performance there by negating the uncertainties. Here, in this work, a direct AC–AC boost resonant converter fed by pulse density modulation (PDM) is realized in a single stage mode. A fuzzy logic-based PDM control technique improves the efficiency and provides the versatile power control with reduced time domain specifications for dynamic changes in load. The proposed system has been studied using MATLAB/SIMULINK and validated using a hardware prototype employing dsPIC30F4011 microcontroller. The results reveal that efficient control over power can be accomplished by varying the density of the switching pulses, and thereby the efficiency is enhanced even with reduced component count. Also, the single-stage conversion is effective than its two-stage counterpart.


Sign in / Sign up

Export Citation Format

Share Document