scholarly journals Closed-Form Expressions for the Analysis of Wave Propagation in Overhead Distribution Lines

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4519
Author(s):  
Theofilos A. Papadopoulos ◽  
Andreas I. Chrysochos ◽  
Christos K. Traianos ◽  
Grigoris Papagiannis

The calculation of the influence of the imperfect earth on overhead conductors is an important issue in power system analysis. Rigorous solutions contain infinite integrals; thus, due to their complex form, different simplified closed-form expressions have been proposed in the literature. This paper presents a detailed analysis of the effect of different closed-form expressions on the investigation of the wave propagation of distribution overhead lines (OHLs). A sensitivity analysis is applied to determine the most important properties influencing the calculation of the OHL parameters. The accuracy of several closed-form earth impedance models is evaluated as well as the influence of the displacement current and imperfect earth on the shunt admittance, which are further employed in the calculation of the propagation characteristics of OHLs. The frequency-dependence of the soil electrical properties, as well as the application of different modal decomposition algorithms, are also investigated. Finally, results on the basis of frequency-domain signal scans and time-domain electromagnetic transient responses are also discussed.

2016 ◽  
Vol 136 (1) ◽  
pp. 63-71
Author(s):  
Ryouhei Kitagawa ◽  
Teruo Takagi ◽  
Koichi Yokoi ◽  
Kimihiko Shimomura ◽  
Atsushi Harada ◽  
...  

2021 ◽  
Vol 11 (15) ◽  
pp. 7007
Author(s):  
Janusz P. Paplinski ◽  
Aleksandr Cariow

This article presents an efficient algorithm for computing a 10-point DFT. The proposed algorithm reduces the number of multiplications at the cost of a slight increase in the number of additions in comparison with the known algorithms. Using a 10-point DFT for harmonic power system analysis can improve accuracy and reduce errors caused by spectral leakage. This paper compares the computational complexity for an L×10M-point DFT with a 2M-point DFT.


Sign in / Sign up

Export Citation Format

Share Document