scholarly journals Phase Voltage-Oriented Control of a PMSG Wind Generator for Unity Power Factor Correction

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5693
Author(s):  
Ming-Fa Tsai ◽  
Chung-Shi Tseng ◽  
Bor-Yuh Lin

This paper presents the power factor control of a permanent magnet synchronous wind generator (PMSG) wind turbine using a phase voltage-oriented control (PVOC) scheme, which is different from the conventional rotor flux-oriented control (RFOC) method and without using a rotor position sensor or sensorless estimator. The proposed control system is operated in two separately synchronously rotating d-q frames. One is for a phase-locked loop (PLL) and the other is for the PVOC current control loop. A PI controller functioned as a low-pass filter in the PLL loop is designed for extracting the phase voltage angle for the coordinate transformation between the stationary α-β frame and the synchronously rotating d-q frame in the PVOC control loop. The d-q modeling of the PMSG with the three-phase voltage vector aligned on the d-axis is then derived and based on which an another PI controller followed by decoupling control is designed, so that the three-phase currents are in phase with the three-phase output voltages of the wind generator for unity power factor correction. The simulation results in PSIM show the performance of the proposed control system which is also experimentally verified by using a TI TMS320F28335 digital control chip.

2013 ◽  
Vol 336-338 ◽  
pp. 450-453
Author(s):  
Jian Ying Li ◽  
Wei Dong Yang ◽  
Ni Na Ma

In view of the fact that active power and reactive power have coupling relation, a novel vector decoupling control strategy is presented for three-phase voltage source PWM rectifier. In the paper, the power control mathematical mode of the PWM rectifier is deduced based on the mathematical model of rectifier in synchronous d-q rotating coordinates, and a new voltage feed forward decoupling compensation control strategy is proposed. The simulation results show that the voltage and current of the three-phase PWM rectifier have better respond preference, the current aberrance is smaller and the voltage is steady under the control strategy. The PWM rectifier can implement PWM commute with unity power factor, but also feed back the energy to AC side with unity power factor.


1970 ◽  
Vol 110 (4) ◽  
pp. 71-76
Author(s):  
R. Cimbals ◽  
O. Krievs ◽  
L. Ribickis

A STATCOM system is presented in this paper applied for compensation of displacement power factor under distorted mains voltage conditions. The developed STATCOM control system consists of two regulating loops - DC link voltage control loop with anti-windup PI controller and the current control loop with a feed-forward PI controller. The simulation results indicate that the developed control system performs well, ensuring displacement power factor compensation with good transient and steady state performance even under significantly distorted grid voltage conditions. Ill. 15, bibl. 8 (in English; abstracts in English and Lithuanian).http://dx.doi.org/10.5755/j01.eee.110.4.291


2010 ◽  
Vol 97-101 ◽  
pp. 2903-2908
Author(s):  
Yu Rong Nan ◽  
Na Meng

Traditional three-phase PFC converters based on one-cycle control (OCC) exhibit instabi- lity at light load conditions.This will cause much more harmonic current which is harmful to the syterm.To overcome this disadvantage, this paper introduces a modified three-phase power factor correction(PFC) converter based on one-cycle control in aircraft electric power system. The input voltage multiplies a gain and its result is added to the actual sensed current,then the sum of them is compared with the sawtooth waveform to yield switching signal.This is the modified contorl mathod. Finally the MATLAB simulations at heavy and light loads as well as the transfer between them are carried. The simulation results show that the improved control circuit can achieve unity power factor and exhibit stability at light loads.


2013 ◽  
Vol 313-314 ◽  
pp. 365-369
Author(s):  
Yun Tao Yue ◽  
Zhi Hong Liu ◽  
Yan Lin

A new three-phase power-factor-correction (PFC) scheme is discussed using two single phase power factor correction circuit parallel connected. Two phase orthonormal voltage is produced by means of a auto transformer from a three phase input,fluctuation of neutral point by three single phase power-factor-correction circuit parallel connected is canceled,coupling interference is reduced among three phases,digitally controlled Power Factor Correction Boost Converters is adapted,input current wave sine with unity power factor suppress the secondary harmonic of input AC side is realized,voltage and low current stresses across each switch are reduced. Simulation and experimental results prove that it can achieve high power factor,low current,good capability of anti-interference and high reliability.


Sign in / Sign up

Export Citation Format

Share Document