scholarly journals A Family of High Voltage Gain Three-Level Step-Up Converters for Photovoltaic Module Integration Applications

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6115
Author(s):  
Ahmad Alzahrani ◽  
Pourya Shamsi ◽  
Mehdi Ferdowsi

This paper proposes a family of step-up three-level DC-DC converter topologies suitable for photovoltaic panel integration applications. The proposed family is suitable to convert the 10–30 V from photovoltaic panels to a 150 V direct current distribution bus. The proposed family enhances the three-level topology in terms of the voltage gain, power density, and filtering requirements at the input level. The filtration is reduced by interleaving. The three-level boost converter’s voltage gain is enhanced by utilizing several options such as switched capacitor cells, switched inductor cells, and flyback transformers or coupled inductors. The enhancement techniques are illustrated by providing the circuit diagram and a comparison of the voltage gain and the number of required components. An example converter of a hybrid three-level boost converter with a flyback transformer is presented to convert 20 V from a photovoltaic panel to a 400 V. The theory of operation and steady-state analysis are provided for the example converter operating in the continuous conduction mode. The converter is simulated to extract the power from three PVL-136 photovoltaic (PV) panels by applying a maximum power point tracking algorithm. The theory of operation and simulation are confirmed with an 80 W experimental prototype, which has an efficiency of around 95% at 40 W load power.

2021 ◽  
Vol 12 (1) ◽  
pp. 178
Author(s):  
Ioana-Monica Pop-Calimanu ◽  
Sorin Popescu ◽  
Dan Lascu

In this paper, a new hybrid SEPIC dc-dc converter with coupled inductors suitable for photovoltaic applications is presented. First, how the new topology was derived will be presented, continuing with its analysis and design equation as a standalone dc-dc topology. The analysis will consist of a steady-state equations derivation, a static conversion ratio calculation based on which the semiconductor voltage and current stresses are evaluated and states the continuous conduction mode (CCM) operation conditions. The converter will then be simulated as a first validation of the theory using the dedicated Caspoc power electronics package. To finally validate the theoretical design, a prototype will be built in order to practically demonstrate the feasibility of the proposed solution and to reveal its main practical features and limitations. A comparative study to several other similar topologies will be carried out to identify its most desirable feature. Finally, an application of the new hybrid converter will consist of a complete solar energy conversion system using a photovoltaic panel. The maximum power point tracking (MPPT) algorithm will be elaborated. The solar system together with the MPPT will first be modeled, then simulated and practically implemented and tested.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Lhoussain El Bahir ◽  
Touria Hassboun

An accurate method is proposed to track the maximum power point of a photovoltaic module. The method is based on the analytical value of the maximum power point voltage, determined from a mathematical model of the photovoltaic panel. The method has the advantage of accuracy without any oscillations, as with certain conventional methods. The algorithm has also the ability to track accurately the maximum power point under variable atmospheric conditions and load changes. Experimental results are presented to show the effectiveness of the method. The implementation of the method needs an online measurement of irradiance, panel temperature, and panel current and voltage.


Author(s):  
D. Selvabharathi ◽  
Palanisamy R ◽  
K. Selvakumar ◽  
V. Kalyanasundaram ◽  
D. Karthikeyan ◽  
...  

<span lang="EN-US">This paper proposes increasing the efficiency of the autonomous Photovoltaic (PV) system by utilizing zeta converter alongside neutral point clamped multilevel inverters (NPC-MLI) based on innovative PWM scheme. The PV system acts as an input source and the relevant control of zeta converter through maximum power point tracking (MPPT) offers the maximum available power from the PV array connected to DC-link. To obtain a high voltage gain we need to exhaust the dc-link voltage as much as possible and reduce stress on the switches. For this the NPC-MLI algorithm approaches PWM technique to perform capacitive charging in parallel and discharging in series to obtain maximum voltage gain. The proposed scheme is designed and verified via detailed simulations in the MATLAB/Simulink environment. </span>


2018 ◽  
Vol 7 (3) ◽  
pp. 1508 ◽  
Author(s):  
R Pavan Kumar Naidu ◽  
S Meikandasivam

In this paper, grid-connected photovoltaic (PV) system is presented. PV system consists of a photovoltaic module, a boost converter, and voltage source inverter. ANFIS based ICM (Incremental Conductance Method) MPPT (Maximum Power Point Tracking) controller is utilized to produce gate signal for DC-DC boost converter. This controller is used for optimizing the total performance of the Photovoltaic system in turn the errors were reduced in Voltage Source Inverter (VSI). The grid-connected PV system performance is evaluated and har-monics occurred in the system are decreased. The proposed methodology is implemented in MATLAB/Simulink. 


Sign in / Sign up

Export Citation Format

Share Document