scholarly journals Novel Mode Adaptive Artificial Neural Network for Dynamic Learning: Application in Renewable Energy Sources Power Generation Prediction

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6405
Author(s):  
Muhammad Ahsan Zamee ◽  
Dongjun Won

A reasonable dataset, which is an essential factor of renewable energy forecasting model development, sometimes is not directly available. Waiting for a substantial amount of training data creates a delay for a model to participate in the electricity market. Also, inappropriate selection of dataset size may lead to inaccurate modeling. Besides, in a multivariate environment, the impact of different variables on the output is often neglected or not adequately addressed. Therefore, in this work, a novel Mode Adaptive Artificial Neural Network (MAANN) algorithm has been proposed using Spearman’s rank-order correlation, Artificial Neural Network (ANN), and population-based algorithms for the dynamic learning of renewable energy sources power generation forecasting model. The proposed algorithm has been trained and compared with three population-based algorithms: Advanced Particle Swarm Optimization (APSO), Jaya Algorithm, and Fine-Tuning Metaheuristic Algorithm (FTMA). Also, the gradient descent algorithm is considered as a base case for comparing with the population-based algorithms. The proposed algorithm has been applied in predicting the power output of a Solar Photovoltaic (PV) and Wind Turbine Energy System (WTES). Using the proposed methodology with FTMA, the error was reduced by 71.261% and 80.514% compared to the conventional fixed-sized dataset gradient descent-based training approach for Solar PV and WTES, respectively.

2019 ◽  
Vol 9 (9) ◽  
pp. 1844 ◽  
Author(s):  
Jesús Ferrero Bermejo ◽  
Juan F. Gómez Fernández ◽  
Fernando Olivencia Polo ◽  
Adolfo Crespo Márquez

The generation of energy from renewable sources is subjected to very dynamic changes in environmental parameters and asset operating conditions. This is a very relevant issue to be considered when developing reliability studies, modeling asset degradation and projecting renewable energy production. To that end, Artificial Neural Network (ANN) models have proven to be a very interesting tool, and there are many relevant and interesting contributions using ANN models, with different purposes, but somehow related to real-time estimation of asset reliability and energy generation. This document provides a precise review of the literature related to the use of ANN when predicting behaviors in energy production for the referred renewable energy sources. Special attention is paid to describe the scope of the different case studies, the specific approaches that were used over time, and the main variables that were considered. Among all contributions, this paper highlights those incorporating intelligence to anticipate reliability problems and to develop ad-hoc advanced maintenance policies. The purpose is to offer the readers an overall picture per energy source, estimating the significance that this tool has achieved over the last years, and identifying the potential of these techniques for future dependability analysis.


Author(s):  
Debani Prasad Mishra ◽  
Amba Subhadarshini Nayak ◽  
Truptasha Tripathy ◽  
Surender Reddy Salkuti ◽  
Sanhita Mishra

The microgrid concept provides a flexible power supply to the utility where the conventional grid is unable to supply. The microgrid structure is based on renewable energy sources known as distributed generators (DGs) and the power network. Nevertheless, the power quality (PQ) is a great challenge in the microgrid concept. Particularly the inclusion of renewable energy sources into the conventional grids increases the problems in the quality of power, like voltage sag/swell, oscillatory transient, voltage flickering, and voltage notching which reduces the quality and reliability of the power supply. In this paper, a microgrid is considered which consists of PV cells as DG, battery energy storage system (BESS), and a novel control strategy known as the nonlinear autoregressive exogenous model (NARX). The proposed controller is an improved artificial neural network (ANN). The various case studies like sag/swell, unbalanced condition, and voltage deviation have been simulated with the model. The comprehensive simulation results are compared with the proportional-integral (PI) controller. Hence in this paper, the robustness of the proposed controller has been studied through different situations.


Author(s):  
Sibel Cevik ◽  
Recep Cakmak ◽  
Ismail Hakki Altas

Electricity generation from renewable energy sources is increased day by day. Accurate estimation of electricity generation from the renewable energy sources which have intermittent and variable characteristics is a requirement to ensure stable operation of the electrical grid. In this study, a multi-layer artificial neural network (ANN) system, which is supported by meteorological forecasting data, has been proposed to predict day ahead hourly solar radiation. In this context, the ANN system which operates by based on cause-effect relationship has been designed. In order to increase accuracy of the solar radiation prediction of the designed ANN, a similar day selection algorithm has been developed. A unique ANN has been constituted for each season by evaluating the seasons within itself. The designed ANN model has been designed, trained and tested in MATLAB simulation environment without using codes of the MATLAB ANN toolbox. Day ahead hourly solar radiation of Trabzon province has been predicted by the proposed ANN. The accuracy of the predictions has been evaluated by the mean absolute percentage error (MAPE), the root means squared error (RMSE), the mean absolute error (MAE) and the correlation coefficient (r) performance measures.


2020 ◽  
Vol 8 (5) ◽  
pp. 4047-4068
Author(s):  
Mehmet Hakan ÖZDEMİR ◽  
Murat İNCE ◽  
Batin Latif AYLAK ◽  
Okan ORAL ◽  
Mehmet Ali TAŞ

Renewable energy sources play an essential role in sustainable development. The share of renewable energy-based energy generation is rapidly increasing all over the world. Turkey has a great potential in terms of both solar and wind energy due to its geographical location. The desired level has not yet been reached in using this potential. Nevertheless, with the increase in installed power in recent years, electricity generation from solar energy has gained momentum. In this study, data on cumulative installed solar power in Turkey in the 2009-2019 period were used. Artificial Neural Network (ANN) and Bidirectional Long Short-Term Memory (BLSTM) methods were selected to predict the cumulative installed solar power for 2020 with these data. The cumulative installed power was predicted, and the results were compared and interpreted.


Author(s):  
Ezzitouni Jarmouni ◽  
Ahmed Mouhsen ◽  
Mohammed Lamhammedi ◽  
Zakarya Benizza

In order to reduce the inconvenience resulting from the use of the traditional energy sources (oil, gas and coal), the integration of renewable energy sources is among the better solutions. With the integration of green energy sources, there are several strategies that can be adopted, including the combination of clean energy sources (solar, wind, and biomass) with each other, or the combination of renewable sources with conventional sources. In this article, we focus on a photovoltaic system allowing the storage of energy in a battery with a coupling to the electrical grid. In order to overcome the problems related to the random operation that accompanies the use of photovoltaic systems, we have developed a control technique based on the use of artificial neural network technology. The complete system was designed and simulated on MATLAB Simulink.


Cybersecurity ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Raphael Anaadumba ◽  
Qi Liu ◽  
Bockarie Daniel Marah ◽  
Francis Mawuli Nakoty ◽  
Xiaodong Liu ◽  
...  

AbstractEnergy forecasting using Renewable energy sources (RESs) is gradually gaining weight in the research field due to the benefits it presents to the modern-day environment. Not only does energy forecasting using renewable energy sources help mitigate the greenhouse effect, it also helps to conserve energy for future use. Over the years, several methods for energy forecasting have been proposed, all of which were more concerned with the accuracy of the prediction models with little or no considerations to the operating environment. This research, however, proposes the uses of Deep Neural Network (DNN) for energy forecasting on mobile devices at the edge of the network. This ensures low latency and communication overhead for all energy forecasting operations since they are carried out at the network periphery. Nevertheless, the cloud would be used as a support for the mobile devices by providing permanent storage for the locally generated data and a platform for offloading resource-intensive computations that exceed the capabilities of the local mobile devices as well as security for them. Electrical network topology was proposed which allows seamless incorporation of multiple RESs into the distributed renewable energy source (D-RES) network. Moreover, a novel grid control algorithm that uses the forecasting model to administer a well-coordinated and effective control for renewable energy sources (RESs) in the electrical network is designed. The electrical network was simulated with two RESs and a DNN model was used to create a forecasting model for the simulated network. The model was trained using a dataset from a solar power generation company in Belgium (elis) and was experimented with a different number of layers to determine the optimum architecture for performing the forecasting operations. The performance of each architecture was evaluated using the mean square error (MSE) and the r-square.


Sign in / Sign up

Export Citation Format

Share Document