scholarly journals Thermodynamic Analysis of a High-Temperature Latent Heat Thermal Energy Storage System

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6634
Author(s):  
David W. MacPhee ◽  
Mustafa Erguvan

Thermal energy storage (TES) technologies are becoming vitally important due to intermittency of renewable energy sources in solar applications. Since high energy density is an important parameter in TES systems, latent heat thermal energy storage (LHTES) system is a common way to store thermal energy. Though there are a great number of experimental studies in the field of LHTES systems, utilizing computational codes can yield relatively quick analyses with relatively small expense. In this study, a numerical investigation of a LHTES system has been studied using ANSYS FLUENT. Results are validated with experiments, using hydroquinone as a phase-change material (PCM), which is external to Therminol VP-1 as a heat transfer fluid (HTF) contained in pipes. Energy efficiency and entropy generation are investigated for different tube/pipe geometries with a constant PCM volume. HTF inlet temperature and flow rate impacts on the thermodynamic efficiencies are examined including viscous dissipation effects. Highest efficiency and lowest entropy generation cases exist when when flow rates are lowest due to low viscous heating effects. A positive relation is found between energy efficiency and volume ratio while it differs for entropy generation for higher and lower velocities. Both efficiency and entropy generation decreased with decreasing HTF inlet temperature. The novelty of this study is the analysis of the effect of volume ratio on system performance and PCM melting time which ultimately proved to be the most dominant factor among those considered herein. However, as PCM solidification and melting time is of primary importance to system designers, simply minimizing entropy generation by decreasing volume ratio in this case does not lead to a practically optimal system, merely to decrease heat transfer entropy generation. Therefore, caution should be taken when applying entropy analyses to any LHTES storage system as entropy minimization methods may not be appropriate for practicality purposes.

Fatty acids are a distinguished category of phase change materials (PCM). However, their inferior thermal conductivity value restricts their potential for thermal energy storage system. Carbonaceous nanomaterials have emerged as promising thermal conductivity enhancer materials for organic PCMs. The present study focuses on preparing a novel PCM nanocomposite comprising of small amount of nanographite (NG) in molten acetamide, an organic PCM, for elevation of the thermal characteristics and examining the trend of the nanocomposite through the course of charging / discharging process. These PCM-nanocomposites are prepared by dispersing NG in molten acetamide with weight fractions of 0.1, 0.2, 0.3, 0.4 and 0.5 %. The scanning electronic microscopic (SEM) analysis was conducted for the characterization of PCM nanocomposite. The energy storage behaviour of the prepared nanocomposites were analyzed with the help of differential scanning calorimeter instruments, which showed that there is no observable variation in the melting point of the nanocomposite, and a decline in the latent heat values. Furthermore, thermal conductivity trend of the nanocomposites caused by NG addition was investigated, which indicated enhancement of thermal conductivity with increasing NG concentration. Further, nanocomposites with a 0.4 wt. % of NG, displayed appreciable increase in rate of heat transfer, reducing melting time and solidification time by 48 and 47 %, respectively. The prepared PCM nanocomposites displayed superior heat transfer trend, permitting substantial thermal energy storage.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3275 ◽  
Author(s):  
Xue Chen ◽  
Xiaolei Li ◽  
Xinlin Xia ◽  
Chuang Sun ◽  
Rongqiang Liu

The energy transport inside a phase change material (PCM) based thermal energy storage system using metal foam as an enhancement technique is investigated numerically. The paraffin is used as the PCM and water as the heat transfer fluid (HTF). The transient heat transfer during the charging and discharging processes is solved, based on the volume averaged conservation equations. The flow in PCM/foam and HTF/foam composites is modelled by the Forchheimer-extended Darcy equation, while the two-temperature model is employed to account for the local thermal non-equilibrium effect between the foam matrix and fluid phase. The results show that the overall performance is greatly improved by inserting metal foam in both HTF and PCM sides. A nearly 84.9% decrease in the time needed for the total process is found compared with the case of pure PCM, and 40% compared with the case of metal foam insert only in the PCM side. Foam porosity and HTF inlet temperature greatly affect the dynamic heat storage/release process.


Author(s):  
Tonny Tabassum Mainul Hasan ◽  
Latifa Begum

This study reports on the unsteady two-dimensional numerical investigations of melting of a paraffin wax (phase change material, PCM) which melts over a temperature range of 8.7oC. The PCM is placed inside a circular concentric horizontal-finned annulus for the storage of thermal energy. The inner tube is fitted with three radially diverging longitudinal fins strategically placed near the bottom part of the annulus to accelerate the melting process there. The developed CFD code used in Tabassum et al., 2018 is extended to incorporate the presence of fins. The numerical results show that the average Nusselt number over the inner tube surface, the total melt fraction, the total stored energy all increased at every time instant in the finned annulus compared to the annulus without fins. This is due to the fact that in the finned annulus, the fins at the lower part of the annulus promotes buoyancy-driven convection as opposed to the slow conduction melting that prevails at the bottom part of the plain annulus. Fins with two different heights have been considered. It is found that by extending the height of the fin to 50% of the annular gap about 33.05% more energy could be stored compared to the bare annulus at the melting time of 82.37 min for the identical operating conditions. The effects of fins with different heights on the temperature and streamfunction distributions are found to be different. The present study can provide some useful guidelines for achieving a better thermal energy storage system.


2000 ◽  
Vol 122 (4) ◽  
pp. 176-182 ◽  
Author(s):  
Mounir Ibrahim ◽  
Pavel Sokolov ◽  
Thomas Kerslake ◽  
Carol Tolbert

Two sets of experimental data for cylindrical canisters with thermal energy storage applications were examined in this paper: 1) Ground Experiments and 2) Space Experiments. A 2-D computational model was developed for unsteady heat transfer (conduction and radiation) with phase-change. The radiation heat transfer employed a finite volume method. The following was found in this study: 1) Ground Experiments, the convection heat transfer is equally important to that of the radiation heat transfer; Radiation heat transfer in the liquid is found to be more significant than that in the void; Including the radiation heat transfer in the liquid resulted in lower temperatures (about 15 K) and increased the melting time (about 10 min.); Generally, most of the heat flow takes place in the radial direction. 2) Space Experiments, Radiation heat transfer in the void is found to be more significant than that in the liquid (exactly the opposite to the Ground Experiments); Accordingly, the location and size of the void affects the performance considerably; Including the radiation heat transfer in the void resulted in lower temperatures (about 40 K). [S0199-6231(00)00304-X]


2019 ◽  
Vol 9 (13) ◽  
pp. 2726 ◽  
Author(s):  
Seyed Soheil Mousavi Ajarostaghi ◽  
Sébastien Poncet ◽  
Kurosh Sedighi ◽  
Mojtaba Aghajani Delavar

Cold thermal energy storage, as a promising way of peak-shifting, can store energy by using cheap electricity during off-peak hours and regenerate electricity during peak times to reduce energy consumption. The most common form of cold storage air conditioning technology is ice on the coil energy storage system. Most of the previous studies so far about ice on coil cold storage system have been done experimentally. Numerical modeling appears as a valuable tool to first better understand the melting process then to improve the thermal performance of such systems by efficient design. Hence, this study aims to simulate the melting process of phase change materials in an internal melt ice-on-coil thermal storage system equipped with a coil tube. A three-dimensional numerical model is developed using ANSYS Fluent 18.2.0 to evaluate the dynamic characteristics of the melting process. The effects of operating parameters such as the inlet temperature and flowrate of the heat transfer fluid are investigated. Also, the effects of the coil geometrical parameters—including coil pitch, diameter, and height—are also considered. Results indicate that conduction is the dominant heat transfer mechanism at the initial stage of the melting process. Increasing either the inlet temperature or the flowrate shortens the melting time. It is also shown that the coil diameter shows the most pronounced effect on the melting rate compared to the other investigated geometrical parameters.


Sign in / Sign up

Export Citation Format

Share Document