scholarly journals System-Supporting Operation of Solid-Oxide Electrolysis Stacks

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 544
Author(s):  
Dominik Schäfer ◽  
Tomke Janßen ◽  
Qingping Fang ◽  
Frank Merten ◽  
Ludger Blum

Flexible, system-oriented operating strategies are becoming increasingly important in terms of achieving a climate-neutral energy system transformation. Solid-oxide electrolysis (SOEC) can play an important role in the production of green synthesis gas from renewable energy in the future. Therefore, it is important to investigate the extent to which SOEC can be used flexibly and which feedback effects and constraints must be taken into account. In this study, we derived a specific load profile from an energy turnaround scenario that supports the energy system. SOEC short-stacks were operated and we investigated the impact that the load profile has on electrical stack performance and stack degradation as well as the product gas composition by means of Fourier-transform infrared spectroscopy. The stacks could follow the grid-related requirement profiles of secondary control power and minute reserves very well with transition times of less than two minutes per 25% of relative power. Only short-term disturbances of the H2/CO ratio were observed during transitions due to the adjustment of feed gases. No elevated degradation effects resulting from flexible operation were apparent over 1300 h, although other causes of degradation were present.

2020 ◽  
Vol 8 (9) ◽  
pp. 2000241
Author(s):  
Muhammad Shirjeel Khan ◽  
Xiaoyong Xu ◽  
Ruth Knibbe ◽  
Ateeq ur Rehman ◽  
Zhiheng Li ◽  
...  

Smart Cities ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 1039-1057
Author(s):  
Amro M. Farid ◽  
Asha Viswanath ◽  
Reem Al-Junaibi ◽  
Deema Allan ◽  
Thomas J. T. Van der Van der Wardt

Recently, electric vehicles (EV) have gained much attention as a potential enabling technology to support CO2 emissions reduction targets. Relative to their internal combustion vehicle counterparts, EVs consume less energy per unit distance, and add the benefit of not emitting any carbon dioxide in operation and instead shift their emissions to the existing local fleet of power generation. However, the true success of EVs depends on their successful integration with the supporting infrastructure systems. Building upon the recently published methodology for the same purpose, this paper presents a “systems-of-systems” case study assessing the impacts of EVs on these three systems in the context of Abu Dhabi. For the physical transportation system, a microscopic discrete-time traffic operations simulator is used to predict the kinematic state of the EV fleet over the duration of one day. For the impact on the intelligent transportation system (ITS), the integration of EVs into Abu Dhabi is studied using a multi-domain matrix (MDM) of the Abu Dhabi Department of Transportation ITS. Finally, for the impact on the electric power system, the EV traffic flow patterns from the CMS are used to calculate the timing and magnitude of charging loads. The paper concludes with the need for an intelligent transportation-energy system (ITES) which would coordinate traffic and energy management functionality.


2021 ◽  
Vol 11 (7) ◽  
pp. 3272
Author(s):  
Sara Stelitano ◽  
Alberto Rullo ◽  
Luigi Piredda ◽  
Elisabetta Mecozzi ◽  
Luigi Di Vito ◽  
...  

The target for European decarburization encourages the use of renewable energy sources and H2 is considered the link in the global energy system transformation. So, research studies are numerous, but only few facilities can test materials and components for H2 storage. This work offers a brief review of H2 storage methods and presents the preliminary results obtained in a new facility. Slow strain rate and fatigue life tests were performed in H2 at 80 MPa on specimens and a tank of AISI 4145, respectively. Besides, the storage capacity at 30 MPa of a solid-state system, they were evaluated on kg scale by adsorption test. The results have shown the H2 influence on mechanical properties of the steel. The adsorption test showed a gain of 26% at 12 MPa in H2 storage with respect to the empty condition. All samples have been characterized by complementary techniques in order to connect the H2 effect with material properties.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 461
Author(s):  
Isabel Azevedo ◽  
Vítor Leal

This paper proposes the use of decomposition analysis to assess the effect of local energy-related actions towards climate change mitigation, and thus improve policy evaluation and planning at the local level. The assessment of the impact of local actions has been a challenge, even from a strictly technical perspective. This happens because the total change observed is the result of multiple factors influencing local energy-related greenhouse gas (GHG) emissions, many of them not even influenced by local authorities. A methodology was developed, based on a recently developed decomposition model, that disaggregates the total observed changes in the local energy system into multiple causes/effects (including local socio-economic evolution, technology evolution, higher-level governance frame and local actions). The proposed methodology, including the quantification of the specific effect associated with local actions, is demonstrated with the case study of the municipality of Malmö (Sweden) in the timeframe between 1990 and 2015.


Sign in / Sign up

Export Citation Format

Share Document