scholarly journals Laboratory Evaluation of a Phasor-Based Islanding Detection Method

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1953
Author(s):  
Szymon Barczentewicz ◽  
Tomasz Lerch ◽  
Andrzej Bień ◽  
Krzysztof Duda

Constantly growing distributed energy generation based on renewable sources creates a number of new challenges for electrical power system operation. One of the challenges is islanding detection. Unintentional islanding, which can cause health and safety hazards for the personnel, is currently being experienced by a growing number of consumers/prosumers especially in the case of photovoltaic inverters. This work presents a new islanding detection method based on synchrophasor measurements. The proposed method works in either a passive or hybrid mode. In a passive mode, a single phasor measurement unit (PMU) in the island region is used. In a hybrid mode, one PMU in the island and another one outside the island are exploited. The proposed method was verified in conducted laboratory tests that confirmed the applicability of PMUs data for effective detection and monitoring of unintentional islanding.

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 790
Author(s):  
Ismael Soto ◽  
Rafael Nilson Rodrigues ◽  
Gabriel Massuyama ◽  
Fabian Seguel ◽  
Pablo Palacios Játiva ◽  
...  

In this manuscript we propose a hybrid Visible Light Communication and Radio Frequency (VLC-RF) scheme for the implementation of a portable Phaser Measurement Unit (PMU) for deep underground tunnels. Through computer simulations and laboratory measurements we are capable of providing Coordinated Universal Time (UTC) to the PMUs, as well as high accuracy positioning in a Global Positioning System (GPS) denied environment. The estimated PMU position, time stamp, and electrical power system measurements are sent to a central monitoring station using a radio frequency uplink with a data rate of hundreds of Kbps. Simulations and experimental measurements show that the proposed scheme can be used to control a large number of VLC-RF PMU devices inside a tunnel. The tests demonstrate the viability of the hybrid prototype, which will improve performance compared to commercial PMUs that lack these features.


Author(s):  
Iyappan Murugesan ◽  
Karpagam Sathish

: This paper presents electrical power system comprises many complex and interrelating elements that are susceptible to the disturbance or electrical fault. The faults in electrical power system transmission line (TL) are detected and classified. But, the existing techniques like artificial neural network (ANN) failed to improve the Fault Detection (FD) performance during transmission and distribution. In order to reduce the power loss rate (PLR), Daubechies Wavelet Transform based Gradient Ascent Deep Neural Learning (DWT-GADNL) Technique is introduced for FDin electrical power sub-station. DWT-GADNL Technique comprises three step, normalization, feature extraction and FD through optimization. Initially sample power TL signal is taken. After that in first step, min-max normalization process is carried out to estimate the various rated values of transmission lines. Then in second step, Daubechies Wavelet Transform (DWT) is employed for decomposition of normalized TLsignal to different components for feature extraction with higher accuracy. Finally in third step, Gradient Ascent Deep Neural Learning is an optimization process for detecting the local maximum (i.e., fault) from the extracted values with help of error function and weight value. When maximum error with low weight value is identified, the fault is detected with lesser time consumption. DWT-GADNL Technique is measured with PLR, feature extraction accuracy (FEA), and fault detection time (FDT). The simulation result shows that DWT-GADNL Technique is able to improve the performance of FEA and reduces FDT and PLR during the transmission and distribution when compared to state-of-the-art works.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2699
Author(s):  
Marceli N. Gonçalves ◽  
Marcelo M. Werneck

Optical Current Transformers (OCTs) and Optical Voltage Transformers (OVTs) are an alternative to the conventional transformers for protection and metering purposes with a much smaller footprint and weight. Their advantages were widely discussed in scientific and technical literature and commercial applications based on the well-known Faraday and Pockels effect. However, the literature is still scarce in studies evaluating the use of optical transformers for power quality purposes, an important issue of power system designed to analyze the various phenomena that cause power quality disturbances. In this paper, we constructed a temperature-independent prototype of an optical voltage transformer based on fiber Bragg grating (FBG) and piezoelectric ceramics (PZT), adequate to be used in field surveys at 13.8 kV distribution lines. The OVT was tested under several disturbances defined in IEEE standards that can occur in the electrical power system, especially short-duration voltage variations such as SAG, SWELL, and INTERRUPTION. The results demonstrated that the proposed OVT presents a dynamic response capable of satisfactorily measuring such disturbances and that it can be used as a power quality monitor for a 13.8 kV distribution system. Test on the proposed system concluded that it was capable to reproduce up to the 41st harmonic without significative distortion and impulsive surges up to 2.5 kHz. As an advantage, when compared with conventional systems to monitor power quality, the prototype can be remote-monitored, and therefore, be installed at strategic locations on distribution lines to be monitored kilometers away, without the need to be electrically powered.


Sign in / Sign up

Export Citation Format

Share Document