scholarly journals Cost and Environmental Benefits of Using Pelleted Corn Stover for Bioethanol Production

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2528
Author(s):  
Ramsharan Pandey ◽  
Nurun Nahar ◽  
Scott W. Pryor ◽  
Ghasideh Pourhashem

While the production costs and logistical benefits of biomass pelleting have been widely discussed in the literature, the downstream economic and environmental benefits of processing pelleted biomass have been largely neglected. To investigate those benefits, we performed a comparative techno-economic analysis and life cycle assessment of producing ethanol using loose and pelleted forms of biomass. Analyses of a 2000 metric tons (dry)/d biorefinery showed that using pelleted biomass is more economical than using loose or baled biomass. The lowest minimum ethanol selling price (MESP) for pelleted biomass was USD 0.58/gal less than the lowest MESP for loose biomass. Among all processing conditions analyzed, MESP for ethanol produced with pelleted biomass was always lower than when produced with loose biomass. Shorter pretreatment and hydrolysis times, higher pretreatment solids loadings, lower ammonia requirements, and reduced enzyme loadings were the primary factors contributing to lower MESP with pelleted biomass. Similarly, pelleted biomass also demonstrated a 50% lower life cycle greenhouse gas emission compared to loose biomass. Emissions from higher pelleting energy were offset by downstream advantage in lower chemical needs.

Author(s):  
Syakira Afiqah Suffian ◽  
Atiah Abdullah Sidek ◽  
Toshihiko Matsuto ◽  
Muataz Hazza Al Hazza ◽  
Hazlina Md Yusof ◽  
...  

The aim of this research was to evaluate the level of greenhouse gas emission from broiler chicken farming industry in Malaysia. In order to achieve that, Life Cycle Assessment method was chosen as a framework to complete the task. A case study was conducted at a broiler chicken farm to gather the data and information related to the broiler chicken production. Cradle-to-gate assessment including distribution stage was conducted based on the ISO14040/1044 guidelines. Inventory data for this case study was gathered in collaboration with one of the selected case study broiler chicken farm company. Greenhouse gas emission that consists of several most affected gases such as carbon dioxide, methane and nitrous oxide was studied. Result shows that the highest carbon dioxide emission came from manure, which accounted for 1,665,342 kg CO2 equivalent per total broilers while the highest methane emission came from feed, which accounted for 126,207.84 g CH4 equivalent per total broilers. For nitrous oxide emission, the highest values came from bedding which accounted for 20,316.87 g N2O equivalent per total broilers in the commercial modern broiler chicken farm. In this case study, it can be concluded that manure gives the most prominent effect to the greenhouse gas emission followed by feed and bedding materials. 


EDIS ◽  
2013 ◽  
Vol 2013 (3) ◽  
Author(s):  
J. Van Treese, II ◽  
Edward A. Hanlon ◽  
N. Y. Amponsah ◽  
J. L. Izursa ◽  
J. C. Capece

This 5-page fact sheet gives an overview of two methods for evaluating energy transformations in biofuels production. The Life Cycle Assessment approach involves measurements affecting greenhouse gases, which can be linked to the energy considerations used in the Emergy Assessment. Although these two methods have their basis in energy or greenhouse gas emission evaluations, their approaches can lead to a reliable judgment regarding a biofuel process. We can use them to evaluate the economic environmental component of a biofuel process, and decide which biofuel processes favor sustainability. The intended audiences of this publication are growers, researchers, students, and any other readers interested in agriculture and ecology. Written by J. Van Treese II, E. A. Hanlon, N. Y. Amponsah, J. L. Izursa, and J. C. Capece, and published by the UF Department of Soil and Water Science, March 2013. http://edis.ifas.ufl.edu/ss579


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Khaled M. Bataineh

This study aims to quantify the overall environmental performances of mechanical recycling of the postconsumer high-density polyethylene (HDPE) and polyethylene terephthalate (PET) in Jordan. The life-cycle assessment (LCA) methodology is used to assess the potential environmental impacts of recycling postconsumer PET and HDPE. It quantifies the total energy requirements, energy sources, atmospheric pollutants, waterborne pollutants, and solid waste resulting from the production of recycled PET and HDPE resin from the postconsumer plastic. System expansion and cut-off recycling allocation methods are applied. The analysis has been carried out according to the LCA standard, series UNI EN ISO 14040-14044:2006. A standard unit of output (functional unit) is defined as “one ton of PET flake” and “one ton of HDPE pellet.” The results of the production of virgin resin are compared with the “cut-off” and “system expansion” recycling results. Depending on the allocation methods applied, a nonrenewable energy saving of 40–85% and greenhouse gas emission saving of 25–75% can be achieved. Based on two allocation methods, PET and HDPE recycling offers important environmental benefits over single-use virgin PET and HDPE. LCA offers a powerful tool for assisting companies and policy-makers in the waste plastic industry. Furthermore, the “system expansion” recycling method is not easy to apply because it requires detailed data outside of the life cycle of the investigated product.


Sign in / Sign up

Export Citation Format

Share Document