scholarly journals Seasonal and Multi-Seasonal Energy Storage by Power-to-Methane Technology

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3265
Author(s):  
Kristóf Kummer ◽  
Attila R. Imre

The time-range of applicability of various energy-storage technologies are limited by self-discharge and other inevitable losses. While batteries and hydrogen are useful for storage in a time-span ranging from hours to several days or even weeks, for seasonal or multi-seasonal storage, only some traditional and quite costly methods can be used (like pumped-storage plants, Compressed Air Energy Storage or energy tower). In this paper, we aim to show that while the efficiency of energy recovery of Power-to-Methane technology is lower than for several other methods, due to the low self-discharge and negligible standby losses, it can be a suitable and cost-effective solution for seasonal and multi-seasonal energy storage.

Author(s):  
Robert Schainker ◽  
Michael Nakhamkin ◽  
John R. Stange ◽  
Louis F. Giannuzzi

Results of engineering and optimization of 25 MW and 50 MW turbomachinery trains for compressed air energy storage (CAES) power plant application are presented. Submitted by equipment suppliers, proposals are based on the commercially available equipment. Performance data and budget prices indicate that the CAES power plant is one of the most cost effective sources of providing peaking power and load management.


Author(s):  
M. Nakhamkin ◽  
M. Patel ◽  
L. Andersson ◽  
P. Abitante ◽  
A. Cohn

This paper presents the results of a project targeted at developing cost effective power plant concept with integrated Coal Gasification System (CGS) and with Compressed Air Energy Storage (CAES) plant. The developed concepts, denoted as CGS/CAES, provide for continuous operation of CGS and the reheat turboexpander train which are high temperature components, thus improving their operation and extending life resource. A parametric thermodynamic analysis is performed for several CGS/CAES concepts differentiated by their turbomachinery parameters, CGS arrangements, operating cycles, and hours of daily generation. A qualitative cost estimate is made using a variety of sources including published EPRI reports and extensive in-house cost data. A technical and cost comparison is made to the Integrated Gasification Combined Cycle (IGCC) plant.


2021 ◽  
Vol 7 (4) ◽  
pp. 51
Author(s):  
Ibrahim Nabil ◽  
Mohamed Mohamed Khairat Dawood ◽  
Tamer Nabil

Author(s):  
B. R. Clausen ◽  
M. Nakhamkin ◽  
E. C. Swensen

This paper presents preliminary engineering results for a 50 MW Compressed Air Energy Storage (CAES) plant for the Alabama Electric Cooperative, Inc. (AEC). The CAES plant would improve AEC’s power generation mix in two ways: (a) it would provide needed peaking/intermediate power (otherwise purchased) and (b) it would increase the load factor of economical baseload units. The paper presents the following: a. Comparative trade-off analysis of various conceptual arrangements with underground storage depths ranging between 1000 feet and 4000 feet. (The most economical concept is selected based on the consideration of economics of the overall plant including underground storage). b. Engineering and cost data, performance data, construction schedule and environmental data for the selected CAES plant concept. The results of this preliminary engineering effort prove that a CAES plant is a cost effective addition to AEC’s installed power generation plants.


Author(s):  
M. Nakhamkin ◽  
E. Swensen ◽  
R. B. Schainker ◽  
R. Pollak

A number of analyses concluded that in order to be cost effective a compressed air energy storage (CAES) plant should have a recuperator, which recovers the low pressure (LP) expander’s exhaust gas heat for preheating the cold cavern air before it enters the high pressure (HP) combustor(s). The use of a recuperator reduces heat rate, and accordingly fuel consumption, by as much as 20–25%. Therefore all feasibility studies on CAES performed for various utilities included a recuperator, and the first CAES plant to be built in the U.S., the 110 MW CAES plant for the Alabama Electric Cooperative (AEC) will utilize a recuperator with a 75% effectiveness.


Author(s):  
M. Nakhamkin ◽  
F. D. Hutchinson ◽  
J. R. Stange ◽  
R. B. Schainker ◽  
F. Canova

Results of engineering and optimization of 25 MW and 50 MW turbomachinery trains for compressed air energy storage (CAES) power plant application are presented. Proposals submitted by equipment suppliers are based on commercially available equipment. Performance data and budget prices indicate that the CAES power plant is one of the most cost effective sources of providing peaking/intermediate power and load management. The paper addresses CAES power plant integration procedure and the specifics of turbomachinery design.


2020 ◽  
Vol 14 (13) ◽  
pp. 2510-2519 ◽  
Author(s):  
Mohammad Amin Mirzaei ◽  
Morteza Zare Oskouei ◽  
Behnam Mohammadi-Ivatloo ◽  
Abdolah Loni ◽  
Kazem Zare ◽  
...  

2020 ◽  
Vol 162 ◽  
pp. 01001
Author(s):  
Javier Menéndez ◽  
Falko Schmidt ◽  
Jorge Loredo

In the current energy context, intermittent and non-dispatchable renewable energy sources, such as wind and solar photovoltaic (generation does not necessarily correspond to demand), require flexible solutions to store energy. Energy storage systems (ESS) are able to balance the intermittent and volatile generation outputs of variable renewable energies (VRE). ESS provide ancillary services such as: frequency, primary and voltage control to the power grid. In order to fulfil the power system control, ESS can switch within seconds for different operation modes. Many times, ESS imply environment impacts on landscape and society. To solve this problem, disused underground spaces, such as closed mines, can be used as underground reservoir for energy storage plants. In this paper, a comparative analysis between underground pumped storage hydropower (UPSH), compressed air energy storage (CAES) and suspended weight gravity energy storage (SWGES) with suspended weights in abandoned mine shafts is carried out. Pumped storage hydropower (PSH) is the most mature concept and account for 99% of bulk storage capacity worldwide. The results obtained show that in UPSH and CAES plants, the amount of stored energy depends mainly on the underground reservoir capacity, while in SWGES plants depends on the depth of the mine shafts and the mass. The energy stored in a SWGES plant (3.81 MWh cycle-1 with 600 m of usable depth assuming 3,000 tonne suspended weight) is much lower than UPSH and CAES plants.


Sign in / Sign up

Export Citation Format

Share Document