scholarly journals Intelligent Energy Management in a Prosumer Community Considering the Load Factor Enhancement

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3624
Author(s):  
Fernando V. Cerna ◽  
Mahdi Pourakbari-Kasmaei ◽  
Luizalba S. S. Pinheiro ◽  
Ehsan Naderi ◽  
Matti Lehtonen ◽  
...  

In prosumers’ communities, the use of storage batteries (SBs) as support for photovoltaic (PV) sources combined with coordination in household appliances usage guarantees several gains. Although these technologies increase the reliability of the electricity supply, the large-scale use of home appliances in periods of lower solar radiation and low electricity tariff can impair the performance of the electrical system. The appearance of new consumption peaks can lead to disturbances. Moreover, the repetition of these events in the short term can cause rapid fatigue of the assets. To address these concerns, this research proposes a mixed-integer linear programming (MILP) model aiming at the optimal operation of the SBs and the appliance usage of each prosumer, as well as a PV plant within a community to achieve the maximum load factor (LF) increase. Constraints related to the household appliances, including the electric vehicle (EV), shared PV plant, and the SBs, are considered. Uncertainties in consumption habits are simulated using a Monte Carlo algorithm. The proposed model was solved using the CPLEX solver. The effectiveness of our proposed model is evaluated with/without the LF improvement. Results corroborate the efficient performance of the proposed tool. Financial benefits are obtained for both prosumers and the energy company.

Author(s):  
Qiang Meng ◽  
Shuaian Wang ◽  
Zhiyuan Liu

A model was developed for network design of a shipping service for large-scale intermodal liners that captured essential practical issues, including consistency with current services, slot purchasing, inland and maritime transportation, multiple-type containers, and origin-to-destination transit time. The model used a liner shipping hub-and-spoke network to facilitate laden container routing from one port to another. Laden container routing in the inland transportation network was combined with the maritime network by defining a set of candidate export and import ports. Empty container flow is described on the basis of path flow and leg flow in the inland and maritime networks, respectively. The problem of network design for shipping service of an intermodal liner was formulated as a mixed-integer linear programming model. The proposed model was used to design the shipping services for a global liner shipping company.


Author(s):  
Gülçin Bektur

In this study, a multi-resource agent bottleneck generalized assignment problem (MRBGAP) is addressed. In the bottleneck generalized assignment problem (BGAP), more than one job can be assigned to an agent, and the objective function is to minimize the maximum load over all agents. In this problem, multiple resources are considered and the capacity of the agents is dependent on these resources and it has minimum two indices. In addition, agent qualifications are taken into account. In other words, not every job can be assignable to every agent. The problem is defined by considering the problem of assigning jobs to employees in a firm. BGAP has been shown to be NP- hard. Consequently, a multi-start iterated tabu search (MITS) algorithm has been proposed for the solution of large-scale problems. The results of the proposed algorithm are compared by the results of the tabu search (TS) algorithm and mixed integer linear programming (MILP) model.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Yinghui Wu ◽  
Yifan Zhu ◽  
Tianyu Cao

Bus timetabling is a subproblem of bus network planning, and it determines departure time of each trip of lines to make vehicles from different lines synchronously arrive at transfer stations. Due to the well-designed coordination of bus timetables, passengers can make a smooth transfer without waiting a long time for connecting buses. This paper addresses the planning level of resynchronizing of bus timetable problem allowing modifications to initial timetable. Timetable modifications consist of shifts in the departure times and headways. A single-objective mixed-integer programming model is proposed for this problem to maximize the number of total transferring passengers benefiting from smooth transfers. We analyze the mathematical properties of this model, and then a preprocessing method is designed to reduce the solution space of the proposed model. The numerical results show that the reduced model is effectively solved by branch and bound algorithm, and the preprocessing method has the potential to be applied for large-scale bus networks.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Hafiz Abd ul Muqeet ◽  
Hafiz Mudassir Munir ◽  
Aftab Ahmad ◽  
Intisar Ali Sajjad ◽  
Guang-Jun Jiang ◽  
...  

Present power systems face problems such as rising energy charges and greenhouse gas (GHG) releases. These problems may be assuaged by participating distributed generators (DGs) and demand response (DR) policies in the distribution system (DS). The main focus of this paper is to propose an energy management system (EMS) approach for campus microgrid (µG). For this purpose, a Pakistani university has been investigated and an optimal solution has been proposed. Conventionally, it contains electricity from the national grid only as a supply to fulfil the energy demand. Under the proposed setup, it contains campus owned nondispatchable DGs such as solar photovoltaic (PV) panels and microturbines (MTs) as dispatchable sources. To overcome the random nature of solar irradiance, station battery has been integrated as energy storage. The subsequent nonlinear mathematical problem has been scheduled by mixed-integer nonlinear programming (MINLP) in MATLAB for saving energy cost and battery aging cost. The framework has been validated under deterministic and stochastic environments. Among random parameters, solar irradiance and load have been taken into consideration. Case studies have been carried out considering the demand response strategies to analyze the proposed model. The obtained results show that optimal management and scheduling of storage in the presence of DGs mutually benefit by minimizing consumption cost (customer) and grid load (utility) which show the efficacy of the proposed model. The results obtained are compared to the existing literature and a significant cost reduction is found.


1999 ◽  
Vol 121 (4) ◽  
pp. 254-261 ◽  
Author(s):  
R. Yokoyama ◽  
K. Ito

A rational method of determining the operational strategy of energy supply plants in consideration of equipment startup/shutdown cost is proposed. The operational planning problem is formulated as a large-scale mixed-integer linear programming one, in which on/off status and energy flow rates of equipment are determined so as to minimize the sum of energy supply and startup/shutdown costs over the period considered. By utilizing a special structure of the problem, an algorithm of solving the problem efficiently is proposed. Through a numerical study on the daily operational planning of a gas turbine cogeneration plant for district heating and cooling, the effectiveness of the proposed algorithm, is ascertained in terms of computation time, and the influence of equipment startup/shutdown cost on the operational strategy and cost is clarified.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yang Xia ◽  
Yuguang Wei ◽  
Yihuan Lai ◽  
Qi Zhang

The railway container transportation is attracting more and more attention in China. In order to improve the service quality, a novel concept of passenger-like container train is proposed, which can reduce the accumulation time of containers at the origin station and increase the train frequency compared with the traditional container through train. With the aim of generating optimal operation strategies for passenger-like container trains, this paper establishes an optimization model for the train stop plan problem, in which the objective is to minimize the total number of stops. In addition, the specific container-to-train distribution and the utilization rate of each individual train are considered. The proposed model is a mixed-integer linear programming one, which can be solved by using the CPLEX solver. Finally, the numerical experiments are performed to test the effectiveness of our model by using a simple railway line and the China Railway Express corridor as examples. The results prove the advantages of our method.


Author(s):  
Ryohei Yokoyama ◽  
Koichi Ito

A rational method of determining the operational strategy of energy supply plants in consideration of equipment startup/shutdown cost is proposed. The operational planning problem is formulated as a large-scale mixed-integer linear programming one, in which on/off status and energy flow rates of equipment are determined so as to minimize the sum of energy supply and startup/shutdown costs over the period considered. By utilizing a special structure of the problem, an algorithm of solving the problem efficiently is proposed. Through a numerical study on the daily operational planning of a gas turbine cogeneration plant for district heating and cooling, the effectiveness of the proposed algorithm is ascertained in terms of computation time, and the influence of equipment startup/shutdown cost on the operational strategy and cost is clarified.


Author(s):  
Erkan Celik ◽  
Nezir Aydin ◽  
Alev Taskin Gumus

This paper aims to decide on the number of facilities and their locations, procurement for pre and post-disaster, and allocation to mitigate the effects of large-scale emergencies. A two-stage stochastic mixed integer programming model is proposed that combines facility location- prepositioning, decisions on pre-stocking levels for emergency supplies, and allocation of located distribution centers (DCs) to affected locations and distribution of those supplies to several demand locations after large-scale emergencies with uncertainty in demand. Also, the use of the model is demonstrated through a case study for prepositioning of supplies in probable large-scale emergencies in the eastern and southeastern Anatolian sides of Turkey. The results provide a framework for relief organizations to determine the location and number of DCs in different settings, by using the proposed model considering the main parameters, as; capacity of facilities, probability of being affected for each demand points, severity of events, maximum distance between a demand point and distribution center. 


2021 ◽  
Vol 11 (3) ◽  
pp. 1005
Author(s):  
Jingshan Wang ◽  
Ke-Jun Li ◽  
Yongliang Liang ◽  
Zahid Javid

In this paper, a model is proposed for the optimal operation of multi-energy microgrids (MEMGs) in the presence of solar photovoltaics (PV), heterogeneous energy storage (HES) and integrated demand response (IDR), considering technical and economic ties among the resources. Uncertainty of solar power as well as the flexibility of electrical, cooling and heat load demand are taken into account. A p-efficient point method is applied to compute PV power at different confidence levels based on historical data. This method converts the uncertain PV energy from stochastic to deterministic to be included in the optimization model. The concept of demand response is extended and mathematically modeled using a linear function based on the quantized flexibility interval of multi-energy load demand. As a result, the overall model is formulated as a mixed-integer linear program, which can be effectively solved by the commercial solvers. The proposed model is implemented on two typical summer and winter days for various cases. Results of case studies show the important benefits for maximum PV utilization, energy efficiency and economic system operation. Moreover, the influence of the different confidence levels of PV power and effectiveness of IDR in the stochastic circumstances are addressed in the optimization-based operation.


2013 ◽  
Vol 221 (3) ◽  
pp. 190-200 ◽  
Author(s):  
Jörg-Tobias Kuhn ◽  
Thomas Kiefer

Several techniques have been developed in recent years to generate optimal large-scale assessments (LSAs) of student achievement. These techniques often represent a blend of procedures from such diverse fields as experimental design, combinatorial optimization, particle physics, or neural networks. However, despite the theoretical advances in the field, there still exists a surprising scarcity of well-documented test designs in which all factors that have guided design decisions are explicitly and clearly communicated. This paper therefore has two goals. First, a brief summary of relevant key terms, as well as experimental designs and automated test assembly routines in LSA, is given. Second, conceptual and methodological steps in designing the assessment of the Austrian educational standards in mathematics are described in detail. The test design was generated using a two-step procedure, starting at the item block level and continuing at the item level. Initially, a partially balanced incomplete item block design was generated using simulated annealing, whereas in a second step, items were assigned to the item blocks using mixed-integer linear optimization in combination with a shadow-test approach.


Sign in / Sign up

Export Citation Format

Share Document