scholarly journals The Application of Silica-Based Aerogel Board on the Fire Resistance and Thermal Insulation Performance Enhancement of Existing External Wall System Retrofit

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4518
Author(s):  
Kuang-Sheng Liu ◽  
Xiao-Feng Zheng ◽  
Chia-Hsing Hsieh ◽  
Shin-Ku Lee

Due to the need of good thermal performance, external wall insulation (EWI) is usually made of materials that are not fire resistant and sometimes flammable. That restricts its application to a particular circumstance such as limited building height. Hence, a material with good thermal insulation and fire resistance performance would allow EWI to be more widely applied. This paper introduces a novel material: a silica-based aerogel porous board, which differs itself from mainstream products available in the market because of its outstanding properties, such as low density, high surface area, low thermal conductivity and superhydrophobicity. Herein, its thermal insulation and fire-resistant performance were tested and compared with commercial products. The cone calorimeter analysis results indicated that the aerogel porous board could improve the fire resistance performance. Moreover, the evaluation of thermal insulation performance suggested that the application of an aerogel porous board on the external stone wall of existing buildings can decrease the U-value by 60%. Through the detailed insight into the case-study, it is quite clear that the carbon impact of building stock could be greatly reduced by means of a coherent set of building envelope retrofitting actions based on this innovative heat insulation material, without compromising the fire safety.

2013 ◽  
Vol 395-396 ◽  
pp. 469-472
Author(s):  
Zu Xu Zou ◽  
Song Ping Mao

It is a problem on building energy efficiency of how to improve the heat insulation performance of building envelope, to make the building outer wall has good heat preservation effect, and to keep the necessary seismic performance. Exterior wall thermal insulation engineering, which is a key part on building energy conservation engineering construction quality acceptance and on building energy efficiency design, is an important part in building energy efficiency projects. Therefore, it is necessary to study the seismic performance based on the fact that the building is building energy efficiency. By the research on exterior insulation materials, the analysis on the performance of external thermal insulation materials currently used, and the research on the factors affecting the seismic performance of external thermal insulation material, It provides a guidance on evaluating the external wall thermal insulation material performance and quality, ensuring the quality of external thermal insulation material, and it is expected to achieve the effect of building energy efficiency.


2013 ◽  
Vol 671-674 ◽  
pp. 1791-1795
Author(s):  
Qian Gu ◽  
Sheng Ren ◽  
Yue Wang ◽  
Hao Luo

The thermal performance of a new regenerated glass pumice board as external wall thermal insulation material was analyzed in this paper. Considering the roles of solar radiation and air convection, and selecting Wuhan city as an example of the hot summer and cold winter zones, the temperature field distributions of the external building walls in different orientations in summer and winter seasons were numerically simulated by using the finite element software ANSYS. The thermal performance of regenerated glass pumice exterior wall external insulation system including the heat transfer coefficient and the temperature distribution was evaluated. The simulation results demonstrate the good thermal insulation performance of the regenerated glass pumice as a new kind of external wall materials, and the feasibility of the application of this environmentally friendly material to the wall insulation system in energy conservation building is also promoted.


2019 ◽  
Vol 136 ◽  
pp. 03018
Author(s):  
Weishu Wang ◽  
Xuewen Ge ◽  
Hanlin Xiong

The envelope of rural buildings has been lack of effective and reasonable thermal insulation method and therefore its energy consumption has always been high. In order to address this problem, this paper aims to optimize the thermal design of building envelope. The simulation using DesignBuilder software for modeling and analyzing, using the orthogonal experimental design method to study the effects of external wall, external window and roof on heating load, and optimal thermal insulation scheme was obtained, which was 100mm PUF (external wall), 6mm+12mm+6mm low-E glass (external window) and 100mm PUF (roof). Results revealed that the addition of sunspace can significantly reduce the heating load and thus the selection of window thermal insulation material is very important. Compared with the condition of highest heating load, the energy-efficient rate of optimal scheme reached to 21.4%. The results of this study will serve as the idea for optimal design of rural buildings envelope.


Buildings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 238 ◽  
Author(s):  
Stamoulis ◽  
Santos ◽  
Lenz ◽  
Tusset

The rational use of energy has motivated research on improving the energy efficiency of buildings, which are responsible for a large share of world consumption. A strategy to achieve this goal is the application of optimized thermal insulation on a building envelope to avoid thermal exchanges with the external environment, reducing the use of heating, ventilation and air-conditioning (HVAC) systems. In order to contribute to the best choice of insulation applied to an industrial shed roof, this study aims to provide an optimization tool to assist this process. Beyond the thermal comfort and cost of the insulation, some hygrothermic properties also have been analysed to obtain the best insulation option. To implement this optimization technique, several thermo-energetic simulations of an industrial shed were performed using the Domus software, applying 4 types of insulation material (polyurethane, expanded polystyrene, rockwool and glass wool) on the roof. Ten thicknesses ranging from 0.5 cm to 5 cm were considered, with the purpose of obtaining different thermal comfort indexes (PPD, predicted percentage dissatisfied). Posteriorly, the best insulation ranking has been obtained from the weights assigned to the parameters in the objective function, using the technique of the genetic algorithm (GA) applied to multi-criteria selection. The optimization results showed that polyurethane (PU) insulation, applied with a thickness of 1 cm was the best option for the roof, considering the building functional parameters, occupant metabolic activity, clothing insulation and climate conditions. On the other hand, when the Brazilian standard was utilized, rock wool (2 cm) was considered the best choice.


2014 ◽  
Vol 899 ◽  
pp. 387-392
Author(s):  
Milan Nič ◽  
Jarmila Nováčiková

Paper deals with practices significantly affecting quality and durability of external thermal insulation of the building envelope. Analysis is made by the survey of existing external constructions of buildings, experimental detection of bearing capacity of expansion anchors, including theoretical modelling of their activity in the external wall processed by the ANSYS program. Paper briefly summarizes new findings detected by control and testing activities for additional thermal protection of the building envelope.


2014 ◽  
Vol 564 ◽  
pp. 315-320 ◽  
Author(s):  
Maatouk Khoukhi ◽  
Mahmoud Tahat

The impact of the thermal conductivity (k-value) change of polystyrene insulation material in building envelope due to changes in temperature on the thermal and energy performance of a typical residential building under hot climate is investigated. Indeed, the thermal and energy performance of buildings depends on the thermal characteristics of the building envelope, and particularly on the thermal resistance of the insulation material used. The thermal insulation material which is determined by its thermal conductivity, which describes the ability of heat to flow cross the material in presence of a gradient of temperature, is the main key to assess the performance of the thermal insulation material. When performing the energy analysis or calculating the cooling load for buildings, we use published values of thermal conductivity of insulation materials, which are normally evaluated at 24°C according to the ASTM standards. In reality, thermal insulation in building is exposed to significant and continuous temperature variations, due essentially to the change of outdoor air temperature and solar radiation. Many types of insulation materials are produced and used in Oman, but not enough information is available to evaluate their performance under the prevailing climatic condition. The main objective of this study is to investigate the relationship between the temperature and thermal conductivity of various densities of polystyrene, which is widely used as building insulation material in Oman. Moreover, the impact of thermal conductivity variation with temperature on the envelope-induced cooling load for a simple building model is discussed. This work will serve as a platform to investigate the effect of the operating temperature on thermal conductivity of other building material insulations, and leads to more accurate assessment of the thermal and energy performance of buildings in Oman.


2019 ◽  
Vol 9 (7) ◽  
pp. 1285 ◽  
Author(s):  
José D. Silvestre ◽  
André M. P. Castelo ◽  
José J. B. C. Silva ◽  
Jorge M. C. L. de Brito ◽  
Manuel D. Pinheiro

This paper analyses the environmental, energy, and economic performances of the External Thermal Insulation Composite System (ETICS) using agglomerated insulation cork board (ICB) or expanded polystyrene (EPS) as insulation material applied in the energetic renovation of the building envelope during a 50-year study period. A comparison between ETICS using ICB and EPS, for the same time horizon, is also presented. The environmental balance is based on “Cradle to Cradle” (C2C) Life Cycle Assessment (LCA), focusing on the carbon footprint and consumption of nonrenewable primary energy (PE-NRe). The characteristics of these products in terms of thermal insulation, the increased energy performance provided by their installation for retrofit of the buildings’ envelope, and the resulting energy savings are considered in the energy balance. The estimation of the C2C carbon and PE-NRe saved is considered in the final balance between the energy and environmental performances. ETICS with ICB is environmentally advantageous both in terms of carbon footprint and of PE-NRe. In fact, the production stage of ICB is less polluting, while EPS requires lower energy consumption to fulfil the heating and cooling needs of a flat, due to its lower U-Value, and its lower acquisition cost results in a lower C2C cost. Comparing both ETICS’ alternatives with reference solutions, it was found that the latter only perform better in the economic dimension, and only for an energy consumption to fulfil less than 25% of the heating and cooling needs. This paper represents an advance to the current state-of-the-art by including all the life-cycle stages and dimensions of the LCA in the analysis of solutions for energy renovation of building envelopes.


Sign in / Sign up

Export Citation Format

Share Document