scholarly journals The Use of 3D Numerical Modeling in Conceptual Design: A Case Study

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5003
Author(s):  
Hanna Michalak ◽  
Paweł Przybysz

This article describes the construction of a building with four aboveground floors and one underground floor as part of the ongoing development of Warsaw’s city center. A 3D numerical model was developed to reflect the spatial and structural solutions of the new building based on the design documentation with regard to the outcomes of geotechnical tests, the actual phases of work completed, the results of the geodetic measurements carried out in individual phases of the building implementation, and the characteristics of the existing adjacent buildings. The 3D numerical model was calibrated taking into account the results of the geodetic measurements of the benchmarks stabilized on the adjacent buildings. The numerical models of the building were used to analyze a number of multiple-step variants, taking into account the increase in the number of aboveground floors (from 1 to 4) and underground floors (by 1), as well as the increase in the projected area of the underground part compared to the area of the site designated for development. The paper presents the conclusions of our analyses, which may be helpful to others designing buildings in intensively urbanized areas and guide them in selecting the best solution.

2010 ◽  
Vol 3 (3) ◽  
pp. 346-356 ◽  
Author(s):  
G. Savaris ◽  
P. H. Hallak ◽  
P. C. A. Maia

The objective of this article is to present the results obtained in a study on the interaction between the behavior of the structure and the foundation settlements and verify the influence of normal load distribution on the columns. In this mechanism, known as structure soil interaction (SSI), as the building is constructed, a transfer of loads occurs from the columns which tend to settle more to those that tend to settle less. The study was conducted in a building which had its settlements monitored from the beginning of construction. For this purpose, a linear tridimensional numerical model was constructed and numerical analysis was performed, using the finite elements method. In these analyses, numerical models corre- sponding to the execution of each floor were used, considering the settlements measured in each stage of the construction. The results of analy- ses showed that the effect of SSI are significant for calculating the normal efforts on the columns, particularly on those located in the first floors.


2021 ◽  
Author(s):  
Michael Hollaway ◽  
Peter Henrys ◽  
Rebecca Killick ◽  
Amber Leeson ◽  
John Watkins

<p>     Numerical models are essential tools for understanding the complex and dynamic nature of the natural environment and how it will respond to a changing climate. With ever increasing volumes of environmental data and increased availability of high powered computing, these models are becoming more complex and detailed in nature. Therefore the ability of these models to represent reality is critical in their use and future development. This has presented a number of challenges, including providing research platforms for collaborating scientists to explore big data, develop and share new methods, and communicate their results to stakeholders and decision makers. This work presents an example of a cloud-based research platform known as DataLabs and how it can be used to simplify access to advanced statistical methods (in this case changepoint analysis) for environmental science applications.</p><p>     A combination of changepoint analysis and fuzzy logic is used to assess the ability of numerical models to capture local scale temporal events seen in observations. The fuzzy union based metric factors in uncertainty of the changepoint location to calculate individual similarity scores between the numerical model and reality for each changepoint in the observed record. The application of the method is demonstrated through a case study on a high resolution model dataset which was able to pick up observed changepoints in temperature records over Greenland to varying degrees of success. The case study is presented using the DataLabs framework, demonstrating how the method can be shared with other users of the platform and the results visualised and communicated to users of different areas of expertise.</p>


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Haibo Zou ◽  
Shanshan Wu ◽  
Xueting Yi ◽  
Nan Wu

After a tropical cyclone (TC) making landfall, the numerical model output sea level pressure (SLP) presents many small-scale perturbations which significantly influence the positioning of the TC center. To fix the problem, Barnes filter with weighting parameters C=2500 and G=0.35 is used to remove these perturbations. A case study of TC Fung-Wong which landed China in 2008 shows that Barnes filter not only cleanly removes these perturbations, but also well preserves the TC signals. Meanwhile, the centers (track) obtained from SLP processed with Barnes filter are much closer to the observations than that from SLP without Barnes filter. Based on the distance difference (DD) between the TC center determined by SLP with/without Barnes filter and observation, statistics analysis of 12 TCs which landed China during 2005–2015 shows that in most cases (about 85%) the DDs are small (between −30 km and 30 km), while in a few cases (about 15%) the DDs are large (greater than 30 km even 70 km). This further verifies that the TC centers identified from SLP with Barnes filter are more accurate compared to that directly obtained from model output SLP. Moreover, the TC track identified with Barnes filter is much smoother than that without Barnes filter.


2020 ◽  
Author(s):  
Diwash Lal Maskey ◽  
Dipesh Nepal ◽  
Daniel Herman ◽  
Gabriele Gaiti ◽  
Nils Rüther

<p>Sedimentation of small as well as large water storage reservoir has become a major issue. Due to the fact that we observe a 1% decrease of reservoir volume every year due to sedimentation and that the largest part of the reservoirs have been built between 70 and 40 years ago, many HPPs are confronted with the threatening scenario that soon the active storage and therefore their lifetime is dramatically diminished. Due to the above mentioned combination, active and sustainable sediment management has become the last option to retain or preferable enlarge the left-over reservoir volume. There are several options for a sustainable sediment handling, each for a different boundary condition, which must be evaluated carefully in order to be successful. For a successful choice, design and conduction of a sediment handling technique, usually a physical scale model will be conducted. Physical scale model have the advantage that there is a lot of experience in conducting these models and that they are illustrative. The disadvantage of scale models is that there are restrictions in the use of certain sizes of sediments due to scaling issues and that they are rather expensive.</p><p>This study attempt to use a 3D numerical model to overcome the above mentioned disadvantages and to serve as an additional source of alternatives in finding the right sediment handling techniques in reservoirs with high discharges of suspended and bed load. The goal is to simulate several flood events in order to gain insights in the current situation as well as to have a better understanding of the physical processes in the reservoir. This will support and positive influence the sustainable design of sediment handling techniques. The numerical model will be verified with flow measurements a physical model study and with bathymetry measurements from field observations. Based on the actual deposition pattern and the given input data, different sediment handling techniques are planned and conducted by means of the numerical model. The results show that the 3D numerical model is able to simulate sediment transport deposition pattern, bed load guide vane structures, as well as bed load diversion structures.</p>


2013 ◽  
Vol 6 (1) ◽  
pp. 121-138 ◽  
Author(s):  
R. G. M. de Andrade ◽  
L. M. Trautwein ◽  
T. N. Bittencourt

The last four decades were important for the Brazilian highway system. Financial investments were made so it could expand and many structural solutions for bridges and viaducts were developed. In parallel, there was a significant raise of pathologies in these structures, due to lack of maintenance procedures. Thus, this paper main purpose is to create a short-term monitoring plan in order to check the structural behavior of a curved highway concrete bridge in current use. A bridge was chosen as a case study. A hierarchy of six numerical models is shown, so it can validate the bridge's structural behaviour. The acquired data from the monitoring was compared with the finest models so a calibration could be made.


2021 ◽  
pp. 106209
Author(s):  
Muhammad Bilal ◽  
Aiguo Xing ◽  
Yu Zhuang ◽  
Yanbo Zhang ◽  
Kaiping Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document