scholarly journals Study of the Long Term Acid Gas Sequestration Process in the Borzęcin Structure: Measurements Insight

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5301
Author(s):  
Marcin Warnecki ◽  
Mirosław Wojnicki ◽  
Jerzy Kuśnierczyk ◽  
Sławomir Szuflita

Geological sequestration of acid gases, including CO2, is now a growing solution to prevent progressive Earth climate change. Disposal of environmentally harmful greenhouse gases must be performed safely and securely to minimise leakage risk and possible uncontrolled emissions of injected gases outside the sequestration structure. The paper describes a series of research activities at the Borzęcin sequestration site located in western Poland, which were designed to study the migration paths of injected acid gases (mainly mixture of CO2 and H2S) into the water-bearing layers underlying natural gas reservoir. Along with understanding the nature and dynamics of acid gases migration within the sequestration structure, the research was also addressed to assess its leak-tightness and the long-term safety of the entire reinjection facility. As a part of the research works, two downhole sampling campaigns were completed in 2018–2019, where samples of water underlying the Borzęcin reservoir were taken and subsequently studied to determine their physicochemical parameters that were never before examined. Compositions of gas dissolved in downhole brine samples were compared with produced and injected gas. Relevant studies of reservoir water from selected wells were performed, including isotopic analyses. Finally, four series of soil gas analyses were performed on the area surrounding the selected well, which are important for the hazardous gas sequestration safety analysis in the Borzęcin facility. All the above mentioned research activities aimed to acquire additional knowledge, which is valuable for risk assessment of the acid gas sequestration process taking place on the specific example of the Borzęcin site operating continuously since 1996.

Author(s):  
Irina Gaus ◽  
Klaus Wieczorek ◽  
Juan Carlos Mayor ◽  
Thomas Trick ◽  
Jose´-Luis Garcia` Sin˜eriz ◽  
...  

The evolution of the engineered barrier system (EBS) of geological repositories for radioactive waste has been the subject of many research programmes during the last decade. The emphasis of the research activities was on the elaboration of a detailed understanding of the complex thermo-hydro-mechanical-chemical processes, which are expected to evolve in the early post closure period in the near field. It is important to understand the coupled THM-C processes and their evolution occurring in the EBS during the early post-closure phase so it can be confirmed that the safety functions will be fulfilled. Especially, it needs to be ensured that interactions during the resaturation phase (heat pulse, gas generation, non-uniform water uptake from the host rock) do not affect the performance of the EBS in terms of its safety-relevant parameters (e.g. swelling pressure, hydraulic conductivity, diffusivity). The 7th Framework PEBS project (Long Term Performance of Engineered Barrier Systems) aims at providing in depth process understanding for constraining the conceptual and parametric uncertainties in the context of long-term safety assessment. As part of the PEBS project a series of laboratory and URL experiments are envisaged to describe the EBS behaviour after repository closure when resaturation is taking place. In this paper the very early post-closure period is targeted when the EBS is subjected to high temperatures and unsaturated conditions with a low but increasing moisture content. So far the detailed thermo-hydraulic behaviour of a bentonite EBS in a clay host rock has not been evaluated at a large scale in response to temperatures of up to 140°C at the canister surface, produced by HLW (and spent fuel), as anticipated in some of the designs considered. Furthermore, earlier THM experiments have shown that upscaling of thermal conductivity and its dependency on water content and/or humidity from the laboratory scale to a field scale needs further attention. This early post-closure thermal behaviour will be elucidated by the HE-E experiment, a 1:2 scale heating experiment setup at the Mont Terri rock laboratory, that started in June 2011. It will characterise in detail the thermal conductivity at a large scale in both pure bentonite as well as a bentonite-sand mixture, and in the Opalinus Clay host rock. The HE-E experiment is especially designed as a model validation experiment at the large scale and a modelling programme was launched in parallel to the different experimental steps. Scoping calculations were run to help the experimental design and prediction exercises taking the final design into account are foreseen. Calibration and prediction/validation will follow making use of the obtained THM dataset. This benchmarking of THM process models and codes should enhance confidence in the predictive capability of the recently developed numerical tools. It is the ultimate aim to be able to extrapolate the key parameters that might influence the fulfilment of the safety functions defined for the long term steady state.


2021 ◽  
Vol 13 (2) ◽  
pp. 224
Author(s):  
Xin Liang ◽  
Lei Gui ◽  
Wei Wang ◽  
Juan Du ◽  
Fei Ma ◽  
...  

Since the impoundment of the Three Gorges Reservoir (TGR) in June 2003, the fluctuation of the reservoir water level coupled with rainfall has resulted in more than 2500 landslides in this region. Among these instability problems, most colluvial landslides exhibit slow-moving patterns and pose a significant threat to local people and channel navigation. Advanced monitoring techniques are therefore implemented to investigate landslide deformation and provide insights for the subsequent countermeasures. In this study, the development pattern of a large colluvial landslide, locally named the Ganjingzi landslide, is analyzed on the basis of long-term monitoring. To understand the kinematic characteristics of the landslide, an integrated analysis based on real-time and multi-source monitoring, including the global navigation satellite system (GNSS), crackmeters, inclinometers, and piezometers, was conducted. The results indicate that the Ganjingzi landslide exhibits a time-variable response to the reservoir water fluctuation and rainfall. According to the supplement of community-based monitoring, the evolution of the landslide consists of three stages, namely the stable stage before reservoir impoundment, the initial movement stage of retrogressive failure, and the shallow movement stage with stepwise acceleration. The latter two stages are sensitive to the drawdown of reservoir water level and rainfall infiltration, respectively. All of the monitoring approaches used in this study are significant for understanding the time-variable pattern of colluvial landslides and are essential for landslide mechanism analysis and early warning for risk mitigation.


2014 ◽  
Vol 41 (8) ◽  
pp. 641 ◽  
Author(s):  
Mickey Agha ◽  
Mason O. Murphy ◽  
Jeffrey E. Lovich ◽  
Joshua R. Ennen ◽  
Christian R. Oldham ◽  
...  

Context There is little information available on how research activities might cause stress responses in wildlife, especially responses of threatened species such as the desert tortoise (Gopherus agassizii). Aims The present study aims to detect behavioural effects of researcher handling and winter precipitation on a natural population of desert tortoises in the desert of Southwestern United States, over the period 1997 to 2014, through extensive assessments of capture events during multiple research studies, and capture–mark–recapture survivorship analysis. Methods Juvenile and adult desert tortoises were repeatedly handled with consistent methodology across 18 years during 10 study seasons. Using a generalised linear mixed-effects model, we assessed the effects of both research manipulation and abiotic conditions on probability of voiding. Additionally, we used a Cormack–Jolly–Seber model to assess the effects of winter precipitation and voiding on long-term apparent survivorship. Key results Of 1008 total capture events, voiding was recorded on 83 (8.2%) occasions in 42 different individuals. Our top models indicated that increases in handling time led to significantly higher probabilities of voiding for juveniles, females and males. Similarly, increases in precipitation resulted in significantly higher probabilities of voiding for juveniles and females, but not for males. Tortoise capture frequency was negatively correlated with voiding occurrence. Cormack–Jolly–Seber models demonstrated a weak effect of winter precipitation on survivorship, but a negligible effect for both voiding behaviour and sex. Conclusions Handling-induced voiding by desert tortoises may occur during common research activities and years of above average winter precipitation. Increased likelihood of voiding in individuals with relatively low numbers of recaptures suggested that tortoises may have perceived researchers initially as predators, and therefore voided as a defensive strategy. Voiding does not appear to impact long-term survivorship in desert tortoises at this site. Implications This study has demonstrated that common handling practices on desert tortoise may cause voiding behaviour. These results suggest that in order to minimise undesirable behavioural responses in studied desert tortoise populations, defined procedures or protocols must be followed by the investigators to reduce contact period to the extent feasible.


Author(s):  
Gautam Talukdar ◽  
Andrew Townsend Peterson ◽  
Vinod Mathur

In India, biodiversity data and information are gaining significance for sustainable development and preparing National Biodiversity Strategies and Action Plans (NBSAPs). Civil societies and individuals are seeking open access to data and information generated with public funds, whereas sensitivity requirements often demand restrictions on the availability of sensitive data. In India, the traditional classification of data for sharing was based on the "Open Series Data" model; i.e. data not specifically included remains inaccessible. The National Data Sharing and Accessibility Policy (NDSAP Anonymous 2012Suppl. material 1) published in 2012 produced a new data sharing framework more focused on the declaration of data as closed. NDSAP is a clear statement that data that are produced by the Government of India should be shared openly. Although much of the verbiage is focused on sharing within the Government to meet national goals, the document does include clear statements about sharing with the public. The policy is intended to apply "to all data and information created, generated, collected and archived using public funds provided by the Government of India". The policy is quite clear that it should apply to all such data, and that such data should be categorized into open-access, registered-access, or restricted-access. NDSAP indicates that all Government of India-produced/funded data is to be opened to the broader community, but provides three access categories (open, registered, restricted). Although NDSAP does not offer much guidance about what sorts of data should fall in each of the categories, it clearly focuses on data sensitive in terms of national security (i.e., data that must be restricted), such as high-resolution satellite imagery of disputed border regions. Institutions collecting biodiversity data usually include primary, research-grade data in the restricted-access category and secondary / derived data (e.g., vegetation maps, species distribution maps) in the open or registered-access category. The conservative approach of not making bioidiversity data easily accessible, is not in accordance with the NDSAP policy, which emphasizes the openness of data. It also counters the main currents in science, which are shifting massively in the direction of opening access to data. Though NDSAP was intended for full implementation by 2014, its uptake by the institutions engaged in primary biodiversity data collection has been slow mainly because: providing primary data in some cases can endanger elements of the natural world; and many researchers wish to keep the data that result from their research activities shielded from full, open access out of a desire to retain control of those data for future analysis or publication. providing primary data in some cases can endanger elements of the natural world; and many researchers wish to keep the data that result from their research activities shielded from full, open access out of a desire to retain control of those data for future analysis or publication. Biodiversity data collected as part of institutional activities belong, in some sense, to the institution, and the institution should value such data over the long term. If institutions curate their biodiversity data for posterity, they can reap the benefits. Imagine the returns if biodiversity data from current ongoing projects were to be compared to data collected 50-100 years later. Thus, organizations should emphasize the long-term view of institutionalizing data resources through fair data restrictions and emphasise on public access, rather than on individual rights and control. This approach may be debatable, but we reckon that it will translate into massive science pay-offs.


2020 ◽  
Author(s):  
Yassar Alamri ◽  
Erik Monasterio ◽  
Lutz Beckert ◽  
Tim J Wilkinson

Abstract BackgroundA student’s motivation is a key factor in their success in undertaking an education endeavour. However, how this relates to involvement in research by medical students is unclear.MethodsAn electronic questionnaire was sent to all medical students at our institution. To ascertain students’ motivation to undertake research, they were asked an open-ended question to describe the single major factor that would encourage them to get involved in research as a medical student. A framework of self-determination theory was used to deductively code the responses as intrinsic motivation (‘IM’; e.g., interest/passion) or extrinsic motivation (‘EM’; e.g. improving CV). The two groups were then contrasted in relation to their research engagement.ResultsA total of 348 students were included in the survey, of whom 204 were coded as IM responses, and 144 were coded as EM responses. Students who engaged in extra-curricular research activities were more likely to report an underlying EM (48% vs. 36%, p = 0.03). They were also older (23.7 ± 3.5 vs. 21.9 ± 3.7, p = 0.005), and more likely to have completed a prior research degree (15% vs. 3%, p = 0.01).ConclusionIn this study, EM was a bigger influencer on research involvement by medical students than IM. Future studies should explore promoters of IM, and include longitudinal data in order to assess whether EM students continue to be involved in research long-term.


2021 ◽  
Author(s):  
Handita Reksi Dwitantra Sutoyo ◽  
Diniko Nurhajj ◽  
Anak Agung Iswara Anindyajati ◽  
Dwi Hudya Febrianto ◽  
Nova Kristianawatie

Abstract Early production of gas reservoirs is usually associated with a volumetric gas driving mechanism with no water production. Aquifer activity is minimal as well during the early life of the reservoir. In this paper, we will discuss about the good engineering practices based on several shut-in pressure data to observe and maximize marginal gas field value. We will also discuss about the possibility of water drive behavior in this field. Shut-in pressure data plays an important role in determining the in-place and reservoir dynamics of the gas reservoir. High shut-in pressure usually indicates high gas reserves. On the other hand, it shows a very strong water drive existence. The study takes place on a sandstone gas reservoir with an abnormal pressure regime on it. Production performance was then analyzed using the rate transient analysis (RTA) to determine its properties and gas in place and crosschecked with shut-in pressure data. From these steps, we can determine the trend of both static and flowing material balance (FMB) analysis to predict the reservoir dynamics. During the early life of production, it is clear that volumetric reservoir plays an important role in the reservoir dynamics since it produces no reservoir water. However, after 1 year of production, it starts to produce reservoir water. Monitoring starts when the first shut-in pressure shows a quite unexpected value. It puts a sense of both high gas reserves and aquifer activity. After applying all the pressure and production data on FMB and p/Z plot, it shows that both high gas reserves and aquifer activity exist in this field. The results of this study change the development strategy of this field, preventing doing major investment on high capital expenditure (CAPEX) with low results due to high aquifer activity. We can conclude that good reservoir monitoring and analysis combining several analytical methods can enhance our insight into reservoir dynamics. Combining FMB and p/Z, geologist starts to compare aquifer volume based on geological data and found to be similar with the results coming from analytical data. 3D reservoir simulation also confirms similar results based on those analyses.


2020 ◽  
Vol 80 (1) ◽  
pp. 627-640
Author(s):  
Chunye Ying ◽  
Xinli Hu ◽  
Chang Zhou ◽  
Sumi Siddiqua ◽  
Gehad Mohamed Hossam Makeen ◽  
...  

2018 ◽  
Vol 23 (5) ◽  
pp. 841-848 ◽  
Author(s):  
William Bonino Rauen ◽  
Ana Camila Ferraresi ◽  
Leila Maranho ◽  
Edinalva Oliveira ◽  
Rudhy Costa ◽  
...  

ABSTRACT The Passaúna catchment is part of the Upper Iguaçu watershed and includes a water supply reservoir for over 500,000 inhabitants of Curitiba metropolitan region. The aim of this study was to establish the state of reservoir water quality, and whether it has undergone any recent medium- and long-term variations. A physical-chemical-biological assessment was undertaken using nine indicators and three indexes: Water Quality Index (WQI), Trophic State Index (TSI) and Shannon-Weaver Index (H’) for macroinvertebrate diversity. Compliance with the prescribed quality standards for the water body was verified using frequency curves. Two WQI calculation approaches were contrasted to test for conditions of partial data unavailability. Temporal trends in key parameters were assessed using Spearman’s rank correlation coefficient. WQI results from 1991-2014 indicated that the water quality may be classified as good and improved in the final decade of such period, while most TSI results were in the oligotrophic/mesotrophic range, but with no significant temporal trend. The biodiversity result of H’=1.6 obtained with data acquired in 2014 indicated a moderately degraded ecosystem that is typically associated with flow regulation and a degree of water quality impairment. Such a multi-indicator integrated physical-chemical-biological monitoring approach comprised a robust framework for assessments of medium-long term aquatic health.


Sign in / Sign up

Export Citation Format

Share Document