scholarly journals Effect of Connection Resistance between Cyclones and Backpass on Furnace Solids Suspension Density Profile and Circulation Rates in CFB

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6162
Author(s):  
Guanwen Luo ◽  
Leming Cheng ◽  
Liyao Li ◽  
Junfeng Wang ◽  
Xiaoguo Jiang ◽  
...  

The connection section between cyclones and backpass is an important configuration in multi-cyclone circulating fluidized bed boilers (CFB). In this work, the resistance coefficient of different connection modes, and connection resistance distribution from each cyclone outlet to backpass (connection branch) in one mode are defined and calculated, in order to investigate their effects on furnace solids suspension density distribution and circulation rates. Three connection modes with different overall resistance coefficients were tested experimentally and analyzed by a 1.5-dimensional model in a four-cyclone scaling CFB apparatus. Both experimental and theoretical results show that, with larger overall resistance of a connection, there are more solids suspended in the furnace bottom and fewer in the top section. The investigation of the C-type connection has revealed that when the branch resistance of the connection decreases from branch No. 1–4, the solids suspension density and circulation rate from corresponding solids recycle loops (No. 1–4) increase. Moreover, the non-uniformity of connection branch resistance distribution will lead to uneven lateral solids suspension density distribution and circulation rates allocation. This effect is enhanced by growing superficial velocity.

2021 ◽  
Vol 2130 (1) ◽  
pp. 012025
Author(s):  
P Mirek

Abstract The paper presents the results of operational measurements of the suspension density distribution in the 966 MWth supercritical Circulating Fluidized Bed boiler. The tests were carried out for four different unit thermal loads, i.e. 40, 60, 80, and 100% MCR. The conducted operational measurements showed that the suspension density distribution of the particulate material in the combustion chamber of the CFB boiler has the form of an exponential curve with maximum values occurring in the bottom part of the furnace. On the basis of the operational data, an attempt was made to reflect the suspension density distribution in the combustion chamber of the boiler using the ANSYS CFD software. The calculations were carried out using the Eulerian multiphase model in an unsteady state condition. As revealed by the simulations, the Eulerian multiphase model allows for a quantitative representation of the suspension density distribution of the granular material only for the maximum boiler load. For other thermal loads, quantitative representation of experimental distributions of suspension density using the Eulerian method is possible except for the dense region.


INEOS OPEN ◽  
2020 ◽  
Vol 3 ◽  
Author(s):  
A. V. Matseevich ◽  
◽  
A. A. Askadskii ◽  

One of the possible approaches to the analysis of a physical mechanism of time dependence for the resistance coefficients of materials is suggested. The material durability at the constant stress is described using the Zhurkov and Gul' equations and the durability at the alternating stress—using the Bailey criterion. The low strains lead to structuring of a material that is reflected in a reduction of the structure-sensitive coefficient in these equations. This affords 20% increase in the durability. The dependence of the resistance coefficient assumes an extremal character; the maximum is observed at the time to rupture lg tr ≈ 2 (s).


Author(s):  
Pengju Huo ◽  
Xiaohong Li ◽  
Yang Liu ◽  
Haiying Qi

AbstractThe influences of loose gas on gas-solid flows in a large-scale circulating fluidized bed (CFB) gasification reactor were investigated using full-loop numerical simulation. The two-fluid model was coupled with the QC-energy minimization in multi-scale theory (EMMS) gas-solid drag model to simulate the fluidization in the CFB reactor. Effects of the loose gas flow rate, Q, on the solid mass circulation rate and the cyclone separation efficiency were analyzed. The study found different effects depending on Q: First, the particles in the loop seal and the standpipe tended to become more densely packed with decreasing loose gas flow rate, leading to the reduction in the overall circulation rate. The minimum Q that can affect the solid mass circulation rate is about 2.5% of the fluidized gas flow rate. Second, the sealing gas capability of the particles is enhanced as the loose gas flow rate decreases, which reduces the gas leakage into the cyclones and improves their separation efficiency. The best loose gas flow rates are equal to 2.5% of the fluidized gas flow rate at the various supply positions. In addition, the cyclone separation efficiency is correlated with the gas leakage to predict the separation efficiency during industrial operation.


2006 ◽  
Vol 61 (2) ◽  
pp. 766-774 ◽  
Author(s):  
Emad Ahmed Mahmoud ◽  
Tsutomu Nakazato ◽  
Nobuyoshi Nakagawa ◽  
Kunio Kato

2004 ◽  
Vol 8 (2) ◽  
pp. 107-126 ◽  
Author(s):  
Jaakko Saastamoinen

New process concepts in energy production and biofuel, which are much more reactive than coal, call for better controllability of the combustion in circulating fluidized bed boilers. Simplified analysis describing the dynamics of combustion in fluidized bed and circulating fluidized bed boilers is presented. Simple formulas for the estimation of the responses of the burning rate and fuel inventory to changes in fuel feeding are presented. Different changes in the fuel feed, such as an impulse, step change, linear increase and cyclic variation are considered. The dynamics of the burning with a change in the feed rate depends on the fuel reactivity and particle size. The response of a fuel mixture with a wide particle size distribution can be found by summing up the effect of different fuel components and size fractions. Methods to extract reaction parameters form dynamic tests in laboratory scale reactors are discussed. The residence time of fuel particles in the bed and the resulting char inventory in the bed decrease with increasing fuel reactivity and differences between coal and biomass is studied. The char inventory affects the stability of combustion. The effect of char inventory and oscillations in the fuel feed on the oscillation of the flue gas oxygen concentration is studied by model calculation. A trend found by earlier measurements is explained by the model.


1979 ◽  
Vol 23 (02) ◽  
pp. 140-156
Author(s):  
P. N. Joubert ◽  
P. H. Hoffmann

Wind tunnel tests were performed to determine the viscous resistance and its components for a 0.564-CB model from the BSRA Trawler Series. It was found that the sum of the pressure and skin friction resistance coefficients agreed well with the viscous resistance coefficient determined from drag balance tests. The range of Reynolds number examined was from 1.15 × 106 to 5.17 × 106. The results for the viscous resistance and its components were fitted using least-squares methods to various equations. The results were also compared with the results of previous tests done at the University of Melbourne on models of Lucy Ash-. ton and a 0.80-CB tanker. It was found that the skin friction and viscous resistance coefficients had curves of quite different position and slope. Local skin friction distribution showed noteworthy differences, especially at the stern, with high values at the keel and low values approaching the waterline.


Sign in / Sign up

Export Citation Format

Share Document