scholarly journals Integrated Uncertainty/Disturbance Suppression Based on Improved Adaptive Sliding Mode Controller for PMSM Drives

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6538
Author(s):  
Mingfei Huang ◽  
Yongting Deng ◽  
Hongwen Li ◽  
Meng Shao ◽  
Jing Liu

Permanent magnet synchronous motors (PMSMs) have attracted great attention in the field of electric drive system. However, the disturbances caused by parameter mismatching, model uncertainty, external load and torque ripple seriously weaken the control accuracy. The traditional adaptive sliding mode control (ASMC) methodology can address slow-varying uncertainties/disturbances whose frequencies are located at the bandwidth of the filter used to design the adaptive law well; however, it has been barely discussed with respect to the periodic situation. In this paper, we extend the ASMC arrangement to periodic case to suppress the torque ripple by using a series-structure resonant controller. Firstly, a typical SMC is designed to force the tracking error of speed to converge to zero and obtain a certain capacity to disturbance. Then, the improved adaptive law is incorporated to estimate the lumped disturbance and torque ripple. The improved adaptive law is enhanced by embedding the resonant controller, which can obtain a better estimating result for torque ripple with repetitive feature. Finally, simulation and experimental results with PI, SMC and proposed methods are compared to verify the effectiveness of the developed controller.

2011 ◽  
Vol 128-129 ◽  
pp. 50-53
Author(s):  
Qing He ◽  
Jin Kun Liu

In this paper, an adaptive sliding mode control (ASMC) method for a single inverted pendulum (IP) is proposed. The physical parameters are transformed into the model information, thus adaptive law for the IP can be designed with unknown physical parameters. By simulation and experiments, we found that the ASMC method can keep the IP in the upright position, with quick parameters adjustment and high degree of system robustness.


Author(s):  
Amir Fazeli ◽  
Meysar Zeinali ◽  
Amir Khajepour ◽  
Mohammad Pournazeri

In this work, a new air hybrid engine configuration is introduced in which two throttles are used to manage the engine load in three modes of operation i.e. braking, air motor, and conventional mode. A Mean Value Model (MVM) of the engine is developed at braking mode and a new Adaptive Sliding Mode Controller (ASMC), recently proposed in the literature, is applied to control the engine torque at this mode. The results show that the controller performs remarkably well in terms of the robustness, tracking error convergence and disturbance attenuation. Chattering effect is also removed by utilizing the ASMC scheme.


Author(s):  
S. H. Chung ◽  
Eric H. K. Fung

The piezoelectric tube actuator of Atomic Force Microscope (AFM) realizes rapid scanning in nano-scale. However, hysteresis, creep and coupling effect of piezoelectric tube actuator significantly limit the precision of AFM. In this paper, an adaptive sliding mode controller is proposed to minimize the tracking error due to the adverse effects. The piezoelectric tube actuator is characterized as a multiple-input-multiple-output (MIMO) nonlinear time-varying system because of hysteresis and creep. The controller is designed based on the reduced order nonlinear finite element (FE) model. Hysteresis is divided into a linear part and a bounded time-varying unknown part to reduce the bound of the uncertainties. The latter part together with creep and electrode dislocation is considered as bounded uncertainty. The controller gains of the equivalent control part are estimated through adaptive laws. The sliding mode observer is designed based on Walcott Zak observer for estimating the unmeasurable states. Lyapunov criterion is stated to guarantee the stability of the closed loop system. The simulation of the piezoelectric tube actuator with the adaptive sliding mode controller is performed under scanning operation. The result shows that the tracking errors are bounded in small values. Finally, the performance of the adaptive sliding mode controller is compared with the output feedback controller and the proportional-integral (PI) controller which is commonly adopted in AFM.


2020 ◽  
Vol 10 (14) ◽  
pp. 4779 ◽  
Author(s):  
Cheng Lu ◽  
Liang Hua ◽  
Xinsong Zhang ◽  
Huiming Wang ◽  
Yunxiang Guo

This paper investigates one kind of high performance control methods for Micro-Electro-Mechanical-System (MEMS) gyroscopes using adaptive sliding mode control (ASMC) scheme with prescribed performance. Prescribed performance control (PPC) method is combined with conventional ASMC method to provide quantitative analysis of gyroscope tracking error performances in terms of specified tracking error bound and specified error convergence rate. The new derived adaptive prescribed performance sliding mode control (APPSMC) can maintain a satisfactory control performance which guarantees system tracking error, at any time, to be within a predefined error bound and the error convergences faster than the error bound. Besides, adaptive control (AC) technique is integrated with PPC to online tune controller parameters, which will converge to their true values at last. The stability of the control system is proved in the Lyapunov stability framework and simulation results on a Z-axis MEMS gyroscope is conducted to validate the effectiveness of the proposed control approach.


2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Wafaa Jawaada ◽  
M. S. M. Noorani ◽  
M. Mossa Al-Sawalha ◽  
M. Abdul Majid

A novel reduced-order adaptive sliding mode controller is developed and experimented in this paper to antisynchronize two different chaotic systems with different order. Based upon the parameters modulation and the adaptive sliding mode control techniques, we show that dynamical evolution of third-order chaotic system can be antisynchronized with the projection of a fourth-order chaotic system even though their parameters are unknown. The techniques are successfully applied to two examples: firstly Lorenz (4th-order) and Lorenz (3rd-order) and secondly the hyperchaotic Lü (4th-order) and Chen (3rd-order). Theoretical analysis and numerical simulations are shown to verify the results.


2014 ◽  
Vol 668-669 ◽  
pp. 428-436
Author(s):  
Fa Xiang Xie ◽  
Bo Hai Ji

This paper concerns the design of robust controller for a linear system with time-varying state and input delay. The new adaptive sliding mode control algorithm of the system with multiple delays in system states and control inputs are proposed. The delay dependent conditions of the closed loop system are formulated and the equivalent gain of the adaptive sliding mode controller is obtained in the form of linear matrix inequalities (LMI). Finally, simulation results of a numerical example based on a practical inverted pendulum shows both the feasibility and efficiency of the proposed controller.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Guangshi Li

In this paper, an adaptive sliding mode control method based on neural networks is presented for a class of manipulator systems. The main characteristic of the discussed system is that the output variable is required to keep within a constraint set. In order to ensure that the system output meets the time-varying constraint condition, the asymmetric barrier Lyapunov function is selected in the design process. According to Lyapunov stability theory, the stability of the closed-loop system is analyzed. It is demonstrated that all signals in the resulted system are bounded, the tracking error converges to a small compact set, and the system output limits in its constrained set. Finally, the simulation example is used to show the effectiveness of the presented control strategy.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gangfeng Yan

Purpose The purpose of this paper is to achieve high-precision sliding mode control without chattering; the control parameters are easy to adjust, and the entire controller is easy to use in engineering practice. Design/methodology/approach Using double sliding mode surfaces, the gain of the control signal can be adjusted adaptively according to the error signal. A kind of sliding mode controller without chattering is designed and applied to the control of ultrasonic motors. Findings The results show that for a position signal with a tracking amplitude of 35 mm, the traditional sliding mode control method has a maximum tracking error of 0.3326 mm under the premise of small chattering; the boundary layer sliding mode control method has a maximum tracking error of 0.3927 mm without chattering, and the maximum tracking error of continuous switching adaptive sliding mode control is 0.1589 mm, and there is no chattering. Under the same control parameters, after adding a load of 0.5 kg, the maximum tracking errors of the traditional sliding mode control method, the boundary layer sliding mode control method and the continuous switching adaptive sliding mode control are 0.4292 mm, 0.5111 mm and 0.1848 mm, respectively. Originality/value The proposed method not only switches continuously, but also the amplitude of the switching signal is adaptive, while maintaining the robustness of the conventional sliding mode control method, which has strong engineering application value.


2013 ◽  
Vol 816-817 ◽  
pp. 363-366
Author(s):  
Yu Feng Li ◽  
Kui Wu Li ◽  
Yu Tian Pan ◽  
Bao Quan Guo

A new fuzzy adaptive sliding mode controller based on fuzzy compensation for robot is proposed. The control architecture employs fuzzy systems to compensate adaptively for plant uncertainties to distinguish different disturbance compensation terms and approximate each of them respectively. By analyzing and comparing the simulation results, it is obviously shown that the control system can lighten the effect on the control system caused by different disturbance factors and eliminate the system chattering than that of traditional SMC.


Sign in / Sign up

Export Citation Format

Share Document