scholarly journals Mechanism of Solute and Thermal Characteristics in a Casson Hybrid Nanofluid Based with Ethylene Glycol Influenced by Soret and Dufour Effects

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6818
Author(s):  
Muhammad Bilal Hafeez ◽  
Wojciech Sumelka ◽  
Umar Nazir ◽  
Hijaz Ahmad ◽  
Sameh Askar

This article models a system of partial differential equations (PDEs) for the thermal and solute characteristics under gradients (concentration and temperature) in the magnetohydrodynamic flow of Casson liquid in a Darcy porous medium. The modelled problems are highly non-linear with convective boundary conditions. These problems are solved numerically with a finite element approach under a tolerance of 10−8. A numerical algorithm (finite element approach) is provided and a numerical procedure is discussed. Convergence is also observed via 300 elements. Simulations are run to explore the dynamics of flow and the transport of heat and mass under parametric variation. To examine the impact of a temperature gradient on the transport of mass and the role of a concentration gradient on the transport of heat energy, simulations are recorded. Remarkable changes in temperature and concentration are noted when Dufour and Soret numbers are varied.

2011 ◽  
Vol 21 (12) ◽  
pp. 2523-2550 ◽  
Author(s):  
DANIELE BOFFI ◽  
NICOLA CAVALLINI ◽  
LUCIA GASTALDI

The Immersed Boundary Method (IBM) has been designed by Peskin for the modeling and the numerical approximation of fluid-structure interaction problems, where flexible structures are immersed in a fluid. In this approach, the Navier–Stokes equations are considered everywhere and the presence of the structure is taken into account by means of a source term which depends on the unknown position of the structure. These equations are coupled with the condition that the structure moves at the same velocity of the underlying fluid. Recently, a finite element version of the IBM has been developed, which offers interesting features for both the analysis of the problem under consideration and the robustness and flexibility of the numerical scheme. Initially, we considered structure and fluid with the same density, as it often happens when dealing with biological tissues. Here we study the case of a structure which can have a density higher than that of the fluid. The higher density of the structure is taken into account as an excess of Lagrangian mass located along the structure, and can be dealt with in a variational way in the finite element approach. The numerical procedure to compute the solution is based on a semi-implicit scheme. In fluid-structure simulations, nonimplicit schemes often produce instabilities when the density of the structure is close to that of the fluid. This is not the case for the IBM approach. In fact, we show that the scheme enjoys the same stability properties as in the case of equal densities.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Özge Akar ◽  
Kai Willner

Abstract In the context of this work, a violin string motion is examined using a finite element approach. The string is formulated via ideal string elements and is bowed at one point on the string; hence, there is a nodal contact between the bow and the string. The bow movement induces the stick-slip effect, which is the cause for the violin string sound. The present paper aims at the investigation of the stick-slip phenomenon of bowed strings, considering well-known bowed string effects like the Helmholtz corner modulation, the Schelleng ripples, and the flattening effect. One key element that is used in this work is the Schelleng diagram, which indicates the “perfect” bow force depending on the bowing position. Within these parameters, the Helmholtz motion is carried out. Additionally, different friction characteristic curves are applied in order to study the impact of the rosin on the string motion.


Author(s):  
Mrutyunjay Rout ◽  
Sasank Shekhar Hota ◽  
Amit Karmakar

This paper presents the numerical modeling of a twisted stiffened cylindrical shell employing finite element approach to investigate the transient response due to impact of multiple masses, wherein the shell and the stiffener are modeled as 8 noded isoparametric shell element with five degrees of freedom per node and 3 noded isoparametric curved beam element having four degrees of freedom per node, respectively. The stiffener element is considered as a discrete beam element and its nodal degrees of freedom are transferred to the corresponding degrees of freedom of the shell element considering curvature and eccentricity. The impact force is predicted by employing modified Hertzian contact law relating the contact force to local indentation. As indentation takes place the impactor induces damage and permanent deformation in the contact zone of stiffened panel, as a result the loading and unloading curves are different. Different mathematical equations are considered for both loading and unloading cases in the stiffened panel during low-velocity impact. The accuracy and effectiveness of the finite element approach is verified by comparing the results with the corresponding solutions of analytical as well as standard computational methods available in the open literature. The optimum design of a structure can only be obtained by understanding the impact behavior and the roles of various parameters affecting the response. Hence, parametric study has been carried out to predict the time histories of contact force, displacement of the impact point and in-plane stresses during low-velocity concurrent/delayed impact at multiple locations of the stationary and rotating stiffened shell.


2007 ◽  
Vol 35 (3) ◽  
pp. 165-182 ◽  
Author(s):  
Maik Brinkmeier ◽  
Udo Nackenhorst ◽  
Heiner Volk

Abstract The sound radiating from rolling tires is the most important source of traffic noise in urban regions. In this contribution a detailed finite element approach for the dynamics of tire/road systems is presented with emphasis on rolling noise prediction. The analysis is split into sequential steps, namely, the nonlinear analysis of the stationary rolling problem within an arbitrary Lagrangian Eulerian framework, and a subsequent analysis of the transient dynamic response due to the excitation caused by road surface roughness. Here, a modal superposition approach is employed using complex eigenvalue analysis. Finally, the sound radiation analysis of the rolling tire/road system is performed.


Sign in / Sign up

Export Citation Format

Share Document