scholarly journals Nontargeted vs. Targeted vs. Smart Load Shifting Using Heat Pump Water Heaters

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7574
Author(s):  
Manasseh Obi ◽  
Cheryn Metzger ◽  
Ebony Mayhorn ◽  
Travis Ashley ◽  
Walter Hunt

Deployment of CTA-2045–enabled devices is increasing in the U.S. market. These devices allow utilities or third-party aggregators to control appliance energy use in homes, and could also be applied to end uses in small commercial buildings. This study focuses on a field study using CTA-2045–enabled water heaters to shift electric load off the peak and toward periods when renewable resources are more prevalent (e.g., near noon for solar resources and near midnight for wind resources). The following load shifting strategies were compared to understand effects on the aggregate load-shifting capabilities of Heat Pump Water Heaters (HPWHs) and on consumer hot water supply: non-targeted (traditional), targeted (grouped, with different shifting schedules) and “smart” (adaptive control commands). The results of this study show that targeted and smart control strategies yield significantly more load-shifting potential from a population of water heaters than the non-targeted approach without sacrificing hot water supply to occupants. However, as control commands become more aggressive, aggregators may face challenges in meeting consumer hot water demand. The findings and lessons learned can benefit electric utilities and inform updates to manufacturer controls and communications standards. The data collected may also be useful for developing and validating HPWH models.

2011 ◽  
Vol 347-353 ◽  
pp. 587-590
Author(s):  
Qing Hai Luo ◽  
Zheng Zuo

This paper analyzes the energy consumption of hot water supply in buildings and the insurmountable shortcoming of low energy efficiency of conventional water heaters, and investigates the progress and problems of developing heat pump water heaters. It is pointed out that developing of heat pump water heaters is one of the efficient approaches to improve the energy efficiency of hot water supply.


Author(s):  
Z. Sirkо ◽  
◽  
V. Korenda ◽  
I. Vyshnyakov ◽  
O. Protasov ◽  
...  

Heat pump - a device for transferring thermal energy from a source of low potential thermal energy to a consumer with a higher temperature. The thermodynamic cycle of a heat pump is similar to a refrigerating machine. Depending on the principle of operation, heat pumps are divided into compression and absorption. The most commonly used compression heat pumps. In recent years, numerous publications on the use of heat pump technology in heating and hot water supply facilities of various spheres - from individual homes to residential neighborhoods have appeared in various media. The authors of the publication have many years of experience in joint scientific and technical cooperation with leading technical universities and industrial organizations in the field of development and practical use of heat pump technology. The authors analyze the possibilities of introducing heat pumps at enterprises and organizations of the State Reserve System of Ukraine. It has been shown that the amount of expenses in comparison with central heating or operation of gas and electric boilers of similar power is several times smaller. It is noted that the implementation of heat pumps is a promising direction in the use of alternative energy sources to meet the heating, ventilation and hot water supply needs of buildings. The payback period from the introduction of heat pumps at enterprises is 4-9 years, depending on the location of the object and the type of source of low-temperature heat. The article meets the requirements of the State Tax Code of Ukraine and can be recommended for publication.


2014 ◽  
Author(s):  
Portia Murray ◽  
Stephen J. Harrison ◽  
Ben Stinson

Heat pump water heaters are increasing in popularity due to their increased energy efficiency and low environmental impact. This paper describes the experimental testing of a transcritical CO2 heat pump water heater at Queen’s University. A modified 4.5 kW Eco-Cute unit was studied. It sourced heat from a constant temperature water supply and rejected the heat to a 273 litre hot water tank through a gas-cooler. The high temperatures that occur in the gas-cooler of this unit make it ideally suited for natural convection, (i.e., thermosyphon) circulation on the potable water side. This has the potential to reduce pumping power, simplify system operation and design, and increase thermal stratification in the hot water storage tank. This configuration, however, is susceptible to the accumulation of sediments, scale and mineral deposits (i.e., fouling) in geographic regions where high mineral deposits may be present in the water supply. To counteract fouling in these cases, a passive back-flushing system was proposed to prevent the accumulation of deposits on the heat transfer surfaces of the gas-cooler. As hot water is drawn from the system, the cold “mains” supply water is directed through the gas-cooler in the reverse direction of normal operation, scouring the heat transfer surfaces and dissolving deposits of inverse-soluble salts which are a major contributor to fouling on hot heat transfer surfaces. The gas-cooler used was a specially designed unit that, although offering high performance in a compact unit, may be susceptible to the fouling and blockage of the heat transfer passages when used at thermosyphon flow rates. Experiments were conducted to evaluate the effects of the back-flush operation on heat pump performance (i.e., COP) and operation. These were conducted under controlled laboratory conditions, at a range of draw flow rates and temperatures, and are summarized in this paper.


2021 ◽  
Vol 937 (4) ◽  
pp. 042037
Author(s):  
Gregory Vasilyev ◽  
Victor Gornov ◽  
Marina Kolesova ◽  
Vitaliy Leskov ◽  
Victoria Silaeva ◽  
...  

Abstract Experimental studies of this article are aimed at solving the problem of reforming the housing and communal services of Russia through rational integration of non-traditional energy sources and secondary energy resources into the energy balance of buildings and structures. An important component of the work was the creation and development of industrial production of reliable competitive heat pump systems of a new generation, cogenerating heat energy and cold in an autonomous mode and providing energy savings of at least 50% due to the combined use of low-potential thermal energy of the soil, the atmospheric air and the exhaust air of ventilation systems for hot water supply and air conditioning systems of apartment buildings.


Energy ◽  
2011 ◽  
Vol 36 (5) ◽  
pp. 2883-2889 ◽  
Author(s):  
E. Elgendy ◽  
J. Schmidt ◽  
A. Khalil ◽  
M. Fatouh

Sign in / Sign up

Export Citation Format

Share Document