scholarly journals Hydraulic Flow Unit Classification and Prediction Using Machine Learning Techniques: A Case Study from the Nam Con Son Basin, Offshore Vietnam

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7714
Author(s):  
Ha Quang Man ◽  
Doan Huy Hien ◽  
Kieu Duy Thong ◽  
Bui Viet Dung ◽  
Nguyen Minh Hoa ◽  
...  

The test study area is the Miocene reservoir of Nam Con Son Basin, offshore Vietnam. In the study we used unsupervised learning to automatically cluster hydraulic flow units (HU) based on flow zone indicators (FZI) in a core plug dataset. Then we applied supervised learning to predict HU by combining core and well log data. We tested several machine learning algorithms. In the first phase, we derived hydraulic flow unit clustering of porosity and permeability of core data using unsupervised machine learning methods such as Ward’s, K mean, Self-Organize Map (SOM) and Fuzzy C mean (FCM). Then we applied supervised machine learning methods including Artificial Neural Networks (ANN), Support Vector Machines (SVM), Boosted Tree (BT) and Random Forest (RF). We combined both core and log data to predict HU logs for the full well section of the wells without core data. We used four wells with six logs (GR, DT, NPHI, LLD, LSS and RHOB) and 578 cores from the Miocene reservoir to train, validate and test the data. Our goal was to show that the correct combination of cores and well logs data would provide reservoir engineers with a tool for HU classification and estimation of permeability in a continuous geological profile. Our research showed that machine learning effectively boosts the prediction of permeability, reduces uncertainty in reservoir modeling, and improves project economics.

2021 ◽  
Author(s):  
Polash Banerjee

Abstract Wildfires in limited extent and intensity can be a boon for the forest ecosystem. However, recent episodes of wildfires of 2019 in Australia and Brazil are sad reminders of their heavy ecological and economical costs. Understanding the role of environmental factors in the likelihood of wildfires in a spatial context would be instrumental in mitigating it. In this study, 14 environmental features encompassing meteorological, topographical, ecological, in situ and anthropogenic factors have been considered for preparing the wildfire likelihood map of Sikkim Himalaya. A comparative study on the efficiency of machine learning methods like Generalized Linear Model (GLM), Support Vector Machine (SVM), Random Forest (RF) and Gradient Boosting Model (GBM) has been performed to identify the best performing algorithm in wildfire prediction. The study indicates that all the machine learning methods are good at predicting wildfires. However, RF has outperformed, followed by GBM in the prediction. Also, environmental features like average temperature, average wind speed, proximity to roadways and tree cover percentage are the most important determinants of wildfires in Sikkim Himalaya. This study can be considered as a decision support tool for preparedness, efficient resource allocation and sensitization of people towards mitigation of wildfires in Sikkim.


2020 ◽  
Vol 198 ◽  
pp. 03023
Author(s):  
Xin Yang ◽  
Rui Liu ◽  
Luyao Li ◽  
Mei Yang ◽  
Yuantao Yang

Landslide susceptibility mapping is a method used to assess the probability and spatial distribution of landslide occurrences. Machine learning methods have been widely used in landslide susceptibility in recent years. In this paper, six popular machine learning algorithms namely logistic regression, multi-layer perceptron, random forests, support vector machine, Adaboost, and gradient boosted decision tree were leveraged to construct landslide susceptibility models with a total of 1365 landslide points and 14 predisposing factors. Subsequently, the landslide susceptibility maps (LSM) were generated by the trained models. LSM shows the main landslide zone is concentrated in the southeastern area of Wenchuan County. The result of ROC curve analysis shows that all models fitted the training datasets and achieved satisfactory results on validation datasets. The results of this paper reveal that machine learning methods are feasible to build robust landslide susceptibility models.


2021 ◽  
Author(s):  
Mohamed Ibrahim Mohamed ◽  
Dinesh Mehta ◽  
Erdal Ozkan

Abstract Determining the closure pressure is crucial for optimal hydraulic fracturing design and successful execution of fracturing treatment. Historically, the use of diagnostic tests before the main fracturing treatment has significantly advanced to gain more information about the pattern of fracture propagation and fluid performance to optimize the designs. The goal is to inject a small volume of fracturing fluid to breakdown the formation and create small fracture geometry, then once pumping is stopped the pressure decline is analyzed to observe the fracture closure. Many analytical methods such as G-Function, square root of time, etc. have been developed to determine the fracture closure pressure. There are cases in which there is difficulty in determining the fracture closure pressure, as well as personal bias and field experiences make it challenging to interpret the changes in the pressure derivative slope and identify fracture closure. These conditions include: High permeability reservoirs where fracture closure occurs very fast due to the quick fluid leakoff.Extremely low permeability reservoir, which requires a long shut-in time for the fluid to leak off and determine the fracture closure pressure.The non-ideal fluid leak-off behavior under complex conditions. The objective of this study is to apply machine learning methods to implement a predesigned algorithm to execute the required tasks and predict the fracture closure pressure while minimizing the shortcomings in determining the closure pressure for non-ideal or subjective conditions. This paper demonstrates training different supervised machine learning algorithms to help predict fracture closure pressure. The workflow involves using the datasets to train and optimize the models, which subsequently are used to predict the closure pressure of testing data. The output results are then compared with actual results from more than 120 DFIT data points. We further propose an integrated approach to feature selection and dataset processing and study the effects of data processing on the success of the model prediction. The results from this study limit the subjectivity and the need for the experience of personal interpreting the data. We speculate that a linear regression and MLP neural network algorithms can yield high scores in the prediction of fracture closure pressure.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Kerry E. Poppenberg ◽  
Vincent M. Tutino ◽  
Lu Li ◽  
Muhammad Waqas ◽  
Armond June ◽  
...  

Abstract Background Intracranial aneurysms (IAs) are dangerous because of their potential to rupture. We previously found significant RNA expression differences in circulating neutrophils between patients with and without unruptured IAs and trained machine learning models to predict presence of IA using 40 neutrophil transcriptomes. Here, we aim to develop a predictive model for unruptured IA using neutrophil transcriptomes from a larger population and more robust machine learning methods. Methods Neutrophil RNA extracted from the blood of 134 patients (55 with IA, 79 IA-free controls) was subjected to next-generation RNA sequencing. In a randomly-selected training cohort (n = 94), the Least Absolute Shrinkage and Selection Operator (LASSO) selected transcripts, from which we constructed prediction models via 4 well-established supervised machine-learning algorithms (K-Nearest Neighbors, Random Forest, and Support Vector Machines with Gaussian and cubic kernels). We tested the models in the remaining samples (n = 40) and assessed model performance by receiver-operating-characteristic (ROC) curves. Real-time quantitative polymerase chain reaction (RT-qPCR) of 9 IA-associated genes was used to verify gene expression in a subset of 49 neutrophil RNA samples. We also examined the potential influence of demographics and comorbidities on model prediction. Results Feature selection using LASSO in the training cohort identified 37 IA-associated transcripts. Models trained using these transcripts had a maximum accuracy of 90% in the testing cohort. The testing performance across all methods had an average area under ROC curve (AUC) = 0.97, an improvement over our previous models. The Random Forest model performed best across both training and testing cohorts. RT-qPCR confirmed expression differences in 7 of 9 genes tested. Gene ontology and IPA network analyses performed on the 37 model genes reflected dysregulated inflammation, cell signaling, and apoptosis processes. In our data, demographics and comorbidities did not affect model performance. Conclusions We improved upon our previous IA prediction models based on circulating neutrophil transcriptomes by increasing sample size and by implementing LASSO and more robust machine learning methods. Future studies are needed to validate these models in larger cohorts and further investigate effect of covariates.


Author(s):  
L. S. Koriashkina ◽  
H. V. Symonets

Purpose. Detecting toxic comments on YouTube video hosting under training videos by classifying unstructured text using a combination of machine learning methods. Methodology. To work with the specified type of data, machine learning methods were used for cleaning, normalizing, and presenting textual data in a form acceptable for processing on a computer. Directly to classify comments as “toxic”, we used a logistic regression classifier, a linear support vector classification method without and with a learning method – stochastic gradient descent, a random forest classifier and a gradient enhancement classifier. In order to assess the work of the classifiers, the methods of calculating the matrix of errors, accuracy, completeness and F-measure were used. For a more generalized assessment, a cross-validation method was used. Python programming language. Findings. Based on the assessment indicators, the most optimal methods were selected – support vector machine (Linear SVM), without and with the training method using stochastic gradient descent. The described technologies can be used to analyze the textual comments under any training videos to detect toxic reviews. Also, the approach can be useful for identifying unwanted or even aggressive information on social networks or services where reviews are provided. Originality. It consists in a combination of methods for preprocessing a specific type of text, taking into account such features as the possibility of having a timecode, emoji, links, and the like, as well as in the adaptation of classification methods of machine learning for the analysis of Russian-language comments. Practical value. It is about optimizing (simplification) the comment analysis process. The need for this processing is due to the growing volumes of text data, especially in the field of education through quarantine conditions and the transition to distance learning. The volume of educational Internet content already needs to automate the processing and analysis of feedback, over time this need will only grow.


SPE Journal ◽  
2020 ◽  
Vol 25 (03) ◽  
pp. 1241-1258 ◽  
Author(s):  
Ruizhi Zhong ◽  
Raymond L. Johnson ◽  
Zhongwei Chen

Summary Accurate coal identification is critical in coal seam gas (CSG) (also known as coalbed methane or CBM) developments because it determines well completion design and directly affects gas production. Density logging using radioactive source tools is the primary tool for coal identification, adding well trips to condition the hole and additional well costs for logging runs. In this paper, machine learning methods are applied to identify coals from drilling and logging-while-drilling (LWD) data to reduce overall well costs. Machine learning algorithms include logistic regression (LR), support vector machine (SVM), artificial neural network (ANN), random forest (RF), and extreme gradient boosting (XGBoost). The precision, recall, and F1 score are used as evaluation metrics. Because coal identification is an imbalanced data problem, the performance on the minority class (i.e., coals) is limited. To enhance the performance on coal prediction, two data manipulation techniques [naive random oversampling (NROS) technique and synthetic minority oversampling technique (SMOTE)] are separately coupled with machine learning algorithms. Case studies are performed with data from six wells in the Surat Basin, Australia. For the first set of experiments (single-well experiments), both the training data and test data are in the same well. The machine learning methods can identify coal pay zones for sections with poor or missing logs. It is found that rate of penetration (ROP) is the most important feature. The second set of experiments (multiple-well experiments) uses the training data from multiple nearby wells, which can predict coal pay zones in a new well. The most important feature is gamma ray. After placing slotted casings, all wells have coal identification rates greater than 90%, and three wells have coal identification rates greater than 99%. This indicates that machine learning methods (either XGBoost or ANN/RF with NROS/SMOTE) can be an effective way to identify coal pay zones and reduce coring or logging costs in CSG developments.


Metabolites ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 243 ◽  
Author(s):  
Ulf W. Liebal ◽  
An N. T. Phan ◽  
Malvika Sudhakar ◽  
Karthik Raman ◽  
Lars M. Blank

The metabolome of an organism depends on environmental factors and intracellular regulation and provides information about the physiological conditions. Metabolomics helps to understand disease progression in clinical settings or estimate metabolite overproduction for metabolic engineering. The most popular analytical metabolomics platform is mass spectrometry (MS). However, MS metabolome data analysis is complicated, since metabolites interact nonlinearly, and the data structures themselves are complex. Machine learning methods have become immensely popular for statistical analysis due to the inherent nonlinear data representation and the ability to process large and heterogeneous data rapidly. In this review, we address recent developments in using machine learning for processing MS spectra and show how machine learning generates new biological insights. In particular, supervised machine learning has great potential in metabolomics research because of the ability to supply quantitative predictions. We review here commonly used tools, such as random forest, support vector machines, artificial neural networks, and genetic algorithms. During processing steps, the supervised machine learning methods help peak picking, normalization, and missing data imputation. For knowledge-driven analysis, machine learning contributes to biomarker detection, classification and regression, biochemical pathway identification, and carbon flux determination. Of important relevance is the combination of different omics data to identify the contributions of the various regulatory levels. Our overview of the recent publications also highlights that data quality determines analysis quality, but also adds to the challenge of choosing the right model for the data. Machine learning methods applied to MS-based metabolomics ease data analysis and can support clinical decisions, guide metabolic engineering, and stimulate fundamental biological discoveries.


Author(s):  
Akshay Rajendra Naik ◽  
A. V. Deorankar ◽  
P. B. Ambhore

Rainfall prediction is useful for all people for decision making in all fields, such as out door gamming, farming, traveling, and factory and for other activities. We studied various methods for rainfall prediction such as machine learning and neural networks. There is various machine learning algorithms are used in previous existing methods such as naïve byes, support vector machines, random forest, decision trees, and ensemble learning methods. We used deep neural network for rainfall prediction, and for optimization of deep neural network Adam optimizer is used for setting modal parameters, as a result our method gives better results as compare to other machine learning methods.


2019 ◽  
Author(s):  
Hannes Rosenbusch ◽  
Felix Soldner ◽  
Anthony M Evans ◽  
Marcel Zeelenberg

Machine learning methods for pattern detection and prediction are increasingly prevalent in psychological research. We provide a comprehensive overview of machine learning, its applications, and how to implement models for research. We review fundamental concepts of machine learning, such as prediction accuracy and out-of-sample evaluation, and summarize four standard prediction algorithms: linear regressions, ridge regressions, decision trees, and random forests (plus k-nearest neighbors, Naïve Bayes classifiers, and support vector machines in the supplementary material). This selection provides a set of powerful models that are implemented regularly in machine learning projects. We demonstrate each method with examples and annotated R code, and discuss best practices for determining sample sizes; comparing model performances; tuning prediction models; preregistering prediction models; and reporting results. Finally, we discuss the value of machine learning methods in maintaining psychology’s status as a predictive science.


2020 ◽  
Author(s):  
Thomas R. Lane ◽  
Daniel H. Foil ◽  
Eni Minerali ◽  
Fabio Urbina ◽  
Kimberley M. Zorn ◽  
...  

<p>Machine learning methods are attracting considerable attention from the pharmaceutical industry for use in drug discovery and applications beyond. In recent studies we have applied multiple machine learning algorithms, modeling metrics and in some cases compared molecular descriptors to build models for individual targets or properties on a relatively small scale. Several research groups have used large numbers of datasets from public databases such as ChEMBL in order to evaluate machine learning methods of interest to them. The largest of these types of studies used on the order of 1400 datasets. We have now extracted well over 5000 datasets from CHEMBL for use with the ECFP6 fingerprint and comparison of our proprietary software Assay Central<sup>TM</sup> with random forest, k-Nearest Neighbors, support vector classification, naïve Bayesian, AdaBoosted decision trees, and deep neural networks (3 levels). Model performance <a>was</a> assessed using an array of five-fold cross-validation metrics including area-under-the-curve, F1 score, Cohen’s kappa and Matthews correlation coefficient. <a>Based on ranked normalized scores for the metrics or datasets all methods appeared comparable while the distance from the top indicated Assay Central<sup>TM</sup> and support vector classification were comparable. </a>Unlike prior studies which have placed considerable emphasis on deep neural networks (deep learning), no advantage was seen in this case where minimal tuning was performed of any of the methods. If anything, Assay Central<sup>TM</sup> may have been at a slight advantage as the activity cutoff for each of the over 5000 datasets representing over 570,000 unique compounds was based on Assay Central<sup>TM</sup>performance, but support vector classification seems to be a strong competitor. We also apply Assay Central<sup>TM</sup> to prospective predictions for PXR and hERG to further validate these models. This work currently appears to be the largest comparison of machine learning algorithms to date. Future studies will likely evaluate additional databases, descriptors and algorithms, as well as further refining methods for evaluating and comparing models. </p><p><b> </b></p>


Sign in / Sign up

Export Citation Format

Share Document