scholarly journals Optimization of Window Design for Daylight and Thermal Comfort in Cold Climate Conditions

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8013
Author(s):  
Tony-Andreas Arntsen ◽  
Bozena Dorota Hrynyszyn

Window design affects the overall performance of a building. It is important to include window design during the initial stages of a project since it influences the performance of daylight and thermal comfort as well as the energy demand for heating and cooling. The Norwegian building code facilitates two alternative methods for achieving a sufficient daylight, and only guidelines for adequate indoor thermal comfort. In this study, a typical Norwegian residential building was modeled to investigate whether the criteria and methods facilitate consistent and good performance through different scenario changes and furthermore, how the national regulations compare to European standards. A better insulated and more air-tight building has usually a lower annual heating demand, with only a marginal decrease in the daylight performance when the window design is unchanged. A more air-tight construction increases the risk of overheating, even in cold climates. This study confirms that a revision of the window design improves the overall performance of a building, which highlights the importance of proper window design. The pursuit of lower energy demand should not be at the expense of indoor thermal comfort considering the anticipated future weather conditions. This study indicates that criteria for thermal comfort and daylight, if clearly defined, can affect the energy demand for heating and cooling, as well as the indoor climate positively, and should be taken into account at the national level. A comparison between the national regulations and the European standards was made, and this study found that the results are not consistent.

2020 ◽  
Vol 24 (2) ◽  
pp. 348-363
Author(s):  
Matxalen Etxebarria ◽  
Xabat Oregi ◽  
Olatz Grijalba ◽  
Rufino J. Hernández

AbstractThe main objective of this article is to demonstrate that passive energy refurbishment interventions influence comfort conditions of households for both cold and hot annual periods, while they help to avoid or promote temperature-related health risk situations. However, improving the thermal efficiency of the building envelope is encouraged in order to reduce energy demand for heating and cooling instead of considering also their impact on users’ health. The calculation methodology to quantify improvements, on the other hand, is drawn from regulation-based standards, which describe the optimal achievable efficiency levels and energy cost savings. The present study, however, addresses how diverse thermal performance variables are (climate, thermal comfort range and occupancy rate), and shows that different thermal assessment standards influence the obtained results. An energy simulation approach was developed to evaluate different scenarios and compare the results. In conclusion, the results contribute to an understanding or to a discussion of the suitability of current energy renovation policies with regard to indoor thermal comfort and temperature-related health risk situations.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 715
Author(s):  
Cristina Andrade ◽  
Sandra Mourato ◽  
João Ramos

Climate change is expected to influence cooling and heating energy demand of residential buildings and affect overall thermal comfort. Towards this end, the heating (HDD) and cooling (CDD) degree-days along with HDD + CDD were computed from an ensemble of seven high-resolution bias-corrected simulations attained from EURO-CORDEX under two Representative Concentration Pathways (RCP4.5 and RCP8.5). These three indicators were analyzed for 1971–2000 (from E-OBS) and 2011–2040, and 2041–2070, under both RCPs. Results predict a decrease in HDDs most significant under RCP8.5. Conversely, it is projected an increase of CDD values for both scenarios. The decrease in HDDs is projected to be higher than the increase in CDDs hinting to an increase in the energy demand to cool internal environments in Portugal. Statistically significant linear CDD trends were only found for 2041–2070 under RCP4.5. Towards 2070, higher(lower) CDD (HDD and HDD + CDD) anomaly amplitudes are depicted, mainly under RCP8.5. Within the five NUTS II


2019 ◽  
Vol 13 (2) ◽  
pp. 207-226
Author(s):  
Fatma Kürüm Varolgüneş

Purpose The purpose of this study is to compare vernacular and new houses in terms of indoor occupant satisfaction and thermal and visual comfort in a region with cold climatic conditions. In line with the data obtained, the contribution of passive design techniques to comfort in housing indoor will be revealed. Design/methodology/approach In this study, the comfort conditions to be provided in a residence were determined and evaluated in Bingol with the help of questionnaires applied on vernacular and new houses. The information gathered from the occupants and the survey study was mainly designed for three purposes: (i) acquiring general information about houses; (ii) acquiring general information about occupants; and (iii) inquiring about the physical comfort satisfaction of the occupants (thermal comfort and visual comfort). Findings Although the average occupant satisfaction in terms of thermal performance in vernacular houses in summer and winter is 3.91, this average is 2.01 for new houses. The average of the general visual comfort of occupants in vernacular houses is 3.59, whereas this rate is 2.63 in new houses. According to the data obtained, occupant satisfaction was higher in vernacular houses than in new houses. In general, the new settlement area is designed and positioned independently of climate and environmental conditions. This situation increases the need to use mechanical systems to provide indoor thermal comfort conditions. The increase in the need for mechanical systems leads to a significant increase in energy expenditures, as well as deterioration of health conditions in places. Research limitations/implications To ensure occupant satisfaction, indoor thermal comfort conditions and healthy environments, vernacular houses should be an example for the design and building of new houses in terms of orientation, environment relations, space dimensions and space usage in accordance with the character of the region and material selection. Originality/value There has not been a serious research on bioclimatic, socioeconomic and cultural sustainability of the vernacular architecture of Bingol. Therefore, this region has been preferred as the study area.


2020 ◽  
Vol 172 ◽  
pp. 19002
Author(s):  
Kavan Javanroodi ◽  
Vahid M. Nik ◽  
Yuchen Yang

Designing building form in urban areas is a complicated process that demands considering a high number of influencing parameters. On the other hand, there has been an increasing trend to design highly fenestrated building envelopes for office buildings to induce higher levels of natural lighting into the workspace. This paper presents a novel optimization framework to design high-performance building form and fenestration configuration considering the impacts of urban microclimate in typical and extreme weather conditions during a thirty-year period of climate data (2010-2039). In this regard, based on the introduced technique and algorithm, the annual energy demand and thermal comfort of over 8008 eligible form combinations with eight different fenestration configurations and seven different building orientation angels were analysed in a detailed urban area to find optimal design solutions in response to microclimate conditions. Results showed that adopting the framework, annual heating, and cooling demand can be reduced by 21% and 38% while maintaining thermal comfort by taking design-based decisions at the early stages of design.


Author(s):  
Sobhy Issam ◽  
Brakez Abderrahim ◽  
Brahim Benhamou

Abstract This paper aims at identifying the impact of three retrofit scenarios of a typical single family house on its energy performance and its indoor thermal comfort in several climates. Two of these scenarios are based on the Moroccan Thermal Regulation in Constructions (RTCM) while the third is the one proposed in this study. The climates, which range from group B to group C of the Köppen climate classification. The results show that the proposed renovation scenario allows reducing the heating load by 19-42% and the cooling load by 29-60% depending on the climate. Furthermore, the RTCM retrofit scenario leads to summer overheating in all climates. One of the main reason of this overheating is the insulation of the slab-on-grade floor as this insulation increases the annual heating/cooling energy needs of the house by 6%-10%. Moreover, the cavity wall technique was found to be the best option for external walls, instead of using high thermal insulting material, in the hot climates. The analysis of the energy performance, the thermal comfort indices and the payback periods for each retrofit scenario shows that the proposed scenario presents the best thermal performance, except for the Cold climate where the RTCM scenario is the most favorable.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2925
Author(s):  
Bernard Zawada ◽  
Joanna Rucińska

The impact of thermal comfort demand on the renovation process was carried out on an optimization basis for the thermo-modernization process of an exemplary single-family home located in Warsaw. The verified TRNSYS simulation program was used to generate a set of variants of building modernization solutions. This variants set was used afterwards as a database for optimization. The analysis performed includes the internal air temperature, indicators of thermal comfort (PPD), and annual energy demand for heating and cooling, and investment costs of modernization building. The results indicated the importance of analyzing various variants of building modernization solutions. Performing modernization without analyzing its effects can have positive as well as negative consequences, e.g., achieving a significant reduction in the primary energy demands at the expense of the deteriorated thermal comfort of users. It was shown that separate analysis of indicators leads to completely different solutions and should not be recommended during modernization of single-family buildings.


2016 ◽  
Vol 26 (3) ◽  
pp. 298-316 ◽  
Author(s):  
Behrang Alimohammadisagvand ◽  
Sadaf Alam ◽  
Mubbashir Ali ◽  
Merkebu Degefa ◽  
Juha Jokisalo ◽  
...  

This study has two aims to investigate the energy demand response (DR) actions on thermal comfort and energy cost in detached residential houses (1960, 2010 and passive) in a cold climate. The first one is to find out the acceptable range of indoor air and operative temperatures complying with the recommended thermal comfort categories in accordance with the EN 15251 standard. The second one is to minimize the energy cost of electric heating system by means of the DR control strategy, without sacrificing thermal comfort of the occupants. This research was carried out with the validated dynamic building simulation tool IDA Indoor Climate and Energy. Three different control strategies were studied: A) a strategy based on real-time hourly electricity price, B) new DR control strategy based on previous hourly electricity prices and C) new predictive DR control strategy based on future hourly electricity prices. The results show that the lowest acceptable indoor air and operative temperatures can be reduced to 19.4℃ and 19.6℃, respectively. The maximum annual saving in total energy cost is about 10% by using the control algorithm C.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3661 ◽  
Author(s):  
Fabrizio Ascione ◽  
Nicola Bianco ◽  
Rosa Francesca De Masi ◽  
Margherita Mastellone ◽  
Giuseppe Peter Vanoli

The present work concerns the energy retrofit of a public educational building at the University of Molise, located in Termoli, South Italy. The study provides a comparison of the results obtained by different dynamic simulations of passive strategies to improve thermal comfort and energy behavior of the building during the summer regime. Firstly, the building model was calibrated against historical consumption data. Then, a subsequent step involves the technical-economic analysis, by means of building performance simulations, of energy upgrading scenarios, specifically, cool roof and green roof technologies for the horizontal opaque envelope and thermal insulation, vented façade, and phase change materials’ applications for the vertical opaque envelope. Improving the indoor thermal comfort and reducing the thermal energy demand during summertime through innovative solutions will be the primary objective of the present study. The energy efficiency measures are compared from the energy, emissions, costs, and indoor comfort points of view. Phase Change Materials applied to the inner side of the external walls are analyzed in depth and, by varying their melting temperature, optimization of design is performed too. This innovative material, with a melting temperature of 23 °C and a freezing temperature of 21 °C, determines the reduction of summer energy consumption of 11.7% and the increase of summer indoor comfort of 215 h. Even if consolidated, other solutions, like the cool roof, green roof, thermal insulation, and vented façade induce improvements in terms of summer energy saving, and the percentage difference compared to the basic building is less than 2%. For this case study, a Mediterranean building, with construction characteristics typical of the 1990s, traditional passive technologies are not very efficient in improving the energy performance, so the investigation focused on the adoption of innovative solutions such as PCMs, for reducing summer energy demand and improving indoor thermal comfort.


2019 ◽  
Vol 37 (5) ◽  
pp. 579-596 ◽  
Author(s):  
Zhen Peng ◽  
Wu Deng ◽  
Yuanda Hong

Purpose From the 2000s onward, construction practices of urban residential buildings in China have shown a material transformation from clay brick to aerated concrete block. Moreover, the consumption of insulating materials for buildings has been increasing due to the new requirements in building energy-saving standards. This transformation and the increased consumption of insulating materials might have a vital impact on a building’s thermal comfort and its associated energy flows. Therefore, the purpose of this paper is to investigate the indoor thermal performance of urban residential buildings built with different materials and further discuss the correlations between indoor thermal comfort and the associated energy input. Design/methodology/approach This study investigated four residential buildings selected from four residential communities located in the cold climate zone of China. The Integrated Environment Solutions program was used to evaluate the thermal comfort levels and to quantify the operational energy consumption of the case study buildings. Additionally, the University of Bath’s Inventory of Carbon and Energy database was used to estimate the embodied energy consumption and CO2 emissions. Findings The study found that materials transition and increasing consumption did not necessarily improve indoor thermal comfort. However, the materials transition has significantly decreased the embodied energy consumption of urban residential buildings. Furthermore, the increased utilization of insulating materials has also decreased the heating and cooling energy consumption. Therefore, overall, the environmental impacts of urban residential buildings have been reduced significantly. Practical implications In the future, residential buildings completed in the 1990s will need regular maintenance, such as adding insulation. Residential buildings completed based on the latest energy-saving requirements should optimize their ventilation design, for example, by increasing the ventilation rate and by reducing solar heat gains in the summer. Originality/value This paper investigates the effects of the materials change on thermal comfort levels and the environmental impacts of urban residential buildings in the cold climate zone of China, as these have not been the focus of many previous studies.


Sign in / Sign up

Export Citation Format

Share Document