scholarly journals Economic Evaluation of an Ammonia-Fueled Ammonia Carrier Depending on Methods of Ammonia Fuel Storage

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8326
Author(s):  
Youngkyun Seo ◽  
Seongjong Han

This study proposed two concepts for ammonia fuel storage for an ammonia-fueled ammonia carrier and evaluated these concepts in terms of economics. The first concept was to use ammonia in the cargo tank as fuel and the second concept was to install an additional independent fuel tank in the vessel. When more fuel tanks were installed, there was no cargo loss. However, there were extra costs for fuel tanks. The target ship was an 84,000 m3 ammonia carrier (very large gas carrier, VLGC). It traveled from Kuwait to South Korea. The capacity of fuel tanks was 4170 m3, which is the required amount for the round trip. This study conducted an economic evaluation to compare the two proposed concepts. Profits were estimated based on sales and life cycle cost (LCC). Results showed that sales were USD 1223 million for the first concept and USD 1287 million for the second concept. Profits for the first and second concepts were USD 684.3 million and USD 739.5 million, respectively. The second concept showed a USD 53.1 million higher profit than the first concept. This means that the second concept, which installed additional independent fuel tanks was better than the first concept in terms of economics. Sensitivity analysis was performed to investigate the influence of given parameters on the results. When the ammonia fuel price was changed by ±25%, there was a 15% change in the profits and if the ammonia (transport) fee was changed by ±25%, there was a 45% change in the profits. The ammonia fuel price and ammonia (cargo) transport fee had a substantial influence on the business of ammonia carriers.

2011 ◽  
Vol 4 (5) ◽  
pp. 158-161 ◽  
Author(s):  
A. Morfonios A. Morfonios ◽  
◽  
D. Kaitelidou D. Kaitelidou ◽  
G. Filntisis G. Filntisis ◽  
G. Baltopoulos G. Baltopoulos ◽  
...  

2018 ◽  
Vol 30 (3) ◽  
pp. 170-182 ◽  
Author(s):  
Carolina Rodríguez ◽  
Karen Iglesias ◽  
Márcia C. Bícego ◽  
Satie Taniguchi ◽  
Silvio Tarou Sasaki ◽  
...  

AbstractAliphatic and polycyclic aromatic hydrocarbons (AHs and PAHs) were investigated in soil and meltwater stream sediments near the Uruguayan Artigas Research Station (BCAA). Gas chromatography with flame ionization detection and gas chromatography mass spectrometry were used to determine the composition of AHs and PAHs, respectively. Total AH concentrations were in the range 0.57–2333 µg g-1, while total PAH concentrations were in the range 1.36–51 650 ng g-1. Based on AH and PAH concentrations, sites in the service area and next to the boat storeroom are highly contaminated, while the other sites sampled have moderate to low contamination levels or are not impacted. High unresolved complex mixture concentrations indicate the occurrence of previous petrogenic contamination, but the dominance of low molecular weight and alkyl PAHs indicate recent oil introductions. Anthropogenic hydrocarbons dominate and are related to diesel fuel and organic residue combustion, fuel storage and boat traffic. Petrogenic contamination is relatively high, as at other Antarctic stations, but is restricted to the boat storeroom and the service area where the incinerator, the generator room and fuel tanks are located. Improvements made in fuel management procedures and the dismantling of the old fuel tanks will reduce the risk of diesel leaks and their impact on the environment near the BCAA. This study provides reference information for future environmental monitoring.


2015 ◽  
Vol 27 (1) ◽  
pp. 59-68
Author(s):  
Hassan Ziari ◽  
Hamid Behbahani ◽  
Amir Ali Amini

For economic evaluation of a highway development project, multiple criteria must be considered on a timeframe longer than the project implementation interval and a geographical area larger than the project zone. In this study, a framework is proposed based on the Network-Level Life Cycle Cost Analysis (NL-LCCA) to assess the effect of highway development projects on mobility, safety, economy, environment and other monetizable criteria. In this approach, project impacts are estimated within physical boundaries of highway network over the network life cycle. This framework can be used as a decision-making support for evaluation and ranking of pre-defined development projects, proposing new cost-effective development projects, assessment of cost efficiency of existing highway network and budget allocation optimization.


Author(s):  
C. San Marchi ◽  
A. Harris ◽  
M. Yip ◽  
B. P. Somerday ◽  
K. A. Nibur

Steel pressure vessels are commonly used for the transport of pressurized gases, including gaseous hydrogen. In the majority of cases, these transport cylinders experience relatively few pressure cycles over their lifetime, perhaps as many as 25 per year, and generally significantly less. For fueling applications, as in fuel tanks on hydrogen-powered industrial trucks, the hydrogen fuel systems may experience thousands of cycles over their lifetime. Similarly, it can be anticipated that the use of tube trailers for large-scale distribution of gaseous hydrogen will require lifetimes of thousands of pressure cycles. This study investigates the fatigue life of steel pressure vessels that are similar to transport cylinders by subjecting full-scale vessels to pressure cycles with gaseous hydrogen between nominal pressure of 3 and 44 MPa. In addition to pressure cycling of vessels that are similar to those in service, engineered defects were machined on the inside of several pressure vessels to simulate manufacturing defects and to initiate failure after relatively low number of cycles. Failure was not observed in as-manufactured vessels with more than 55,000 pressure cycles, nor in vessels with relatively small, engineered defects subjected to more than 40,000 cycles. Large engineered defects (with depth greater than 5% of the wall thickness) resulted in failure after 8,000 to 15,000 pressure cycles. Defects machined to depths less than 5% wall thickness did not induce failures. Four pressure vessel failures were observed during the course of this project and, in all cases, failure occurred by leak before burst. The performance of the tested vessels is compared to two design approaches: fracture mechanics design approach and traditional fatigue analysis design approach. The results from this work have been used as the basis for the design rules for Type 1 fuel tanks in the standard entitled “Compressed Hydrogen-Powered Industrial Truck, On-board Fuel Storage and Handling Components (HPIT1)” from CSA America.


Author(s):  
Zilu Guo ◽  
Zhongqiang Huang ◽  
Kenny Q. Zhu ◽  
Guandan Chen ◽  
Kaibo Zhang ◽  
...  

Paraphrase generation plays key roles in NLP tasks such as question answering, machine translation, and information retrieval. In this paper, we propose a novel framework for paraphrase generation. It simultaneously decodes the output sentence using a pretrained wordset-to-sequence model and a round-trip translation model. We evaluate this framework on Quora, WikiAnswers, MSCOCO and Twitter, and show its advantage over previous state-of-the-art unsupervised methods and distantly-supervised methods by significant margins on all datasets. For Quora and WikiAnswers, our framework even performs better than some strongly supervised methods with domain adaptation. Further, we show that the generated paraphrases can be used to augment the training data for machine translation to achieve substantial improvements.


Author(s):  
Veerasak Likhitruangsilp ◽  
Hang T. T. Le ◽  
Nobuyoshi Yabuki ◽  
Photios G. Ioannou

In recent years, the fierce competition in worldwide real-estate market has pushed the stakeholders towards the sustainability for buildings. Life-cycle cost (LCC) is an effective economic evaluation tool that provides a detailed account for all costs related to constructing, operating, maintaining, and disposing a construction project over a defined period of time. Awareness of better value of money throughout the LCC is beyond the initial price. Governments and Contracting authorities add the LCC as a key provision in the context of National Codes and Council Directives to promote the growth of sustainability concept. Current LCC analytical methods are costly, laborious, and time-consuming due to the difficulties of obtaining information and implementing many single LCC analyses for all building elements, which may be attributed to the inaccuracy of results. Building information modeling (BIM) is a modern technology that can potentially overcome the asperities that obstruct practical LCC implementation. This paper develops a new automated system for performing LCC analyses for new building projects by integrating BIM authoring programming with visual programming. The proposed system consists of two main modules. The BIM module is designed to retrieve 3D geometric and physical parameters of building element types. The life-cycle cost calculation module can perform automatic estimating and report results. This system provides an economic evaluation tool for the owner to manage the total life-cycle budget of their projects.


Sign in / Sign up

Export Citation Format

Share Document