scholarly journals Identification of Inter-Turn Short-Circuits in Induction Motor Stator Winding Using Simulated Annealing

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 117
Author(s):  
Marcin Tomczyk ◽  
Ryszard Mielnik ◽  
Anna Plichta ◽  
Iwona Goldasz ◽  
Maciej Sułowicz

This paper presents a method of inter-turn short-circuit identification in induction motors during load current variations based on a hybrid analytic approach that combines the genetic algorithm and simulated annealing. With this approach, the essence of the method relies on determining the reference matrices and calculating the distance between the reference matric values and the test matrix. As a whole, it is a novel approach to the process of identifying faults in induction motors. Moreover, applying a discrete optimization algorithm to search for alternative solutions makes it possible to obtain the true minimal values of the matrices in the identification process. The effectiveness of the applied method in the monitoring and identification processes of the inter-turn short-circuit in the early stage of its creation was confirmed in tests carried out for several significant state variables describing physical magnitudes of the selected induction motor model. The need for identification of a particular fault is related to a gradual increase in its magnitude in the process of the induction motor’s exploitation. The occurrence of short-circuits complicates the dynamic properties of the measured diagnostic signals of the system to a great extent.

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8523
Author(s):  
Marcin Tomczyk ◽  
Ryszard Mielnik ◽  
Anna Plichta ◽  
Iwona Gołdasz ◽  
Maciej Sułowicz

This paper presents a new method of inter-turn short-circuit detection in cage induction motors. The method is based on experimental data recorded during load changes. Measured signals were analyzed using a genetic algorithm. This algorithm was next used in the diagnostics procedure. The correctness of fault detection was verified during experimental tests for various configurations of inter-turn short-circuits. The tests were run for several relevant diagnostic signals that contain symptoms of faults in an examined cage induction motor. The proposed algorithm of inter-turn short-circuit detection for various levels of winding damage and for various loads of the examined motor allows one to state the usefulness of this diagnostic method in normal industry conditions of motor exploitation.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2510
Author(s):  
Konrad Górny ◽  
Piotr Kuwałek ◽  
Wojciech Pietrowski

The article proposes a proprietary approach to the diagnosis of induction motors allowing increasing the reliability of electric vehicles. This approach makes it possible to detect damage in the form of an inter-turn short-circuit at an early stage of its occurrence. The authors of the article describe an effective diagnostic method using the extraction of diagnostic signal features using an Enhanced Empirical Wavelet Transform and an algorithm based on the method of Ensemble Bagged Trees. The article describes in detail the methodology of the carried out research, presents the method of extracting features from the diagnostic signal and describes the conclusions resulting from the research. Phase current waveforms obtained from a real object as well as simulation results based on the field-circuit model of an induction motor were used as a diagnostic signal in the research. In order to determine the accuracy of the damage classification, simple metrics such as accuracy, sensitivity, selectivity, precision as well as complex metrics weight F1 and macro F1 were used.


Author(s):  
Renato Carlson ◽  
Cláudia A. da Silva ◽  
Nelson Sadowski ◽  
Michel Lajoie-Mazenc

This work uses a methodology based on 2D-Finite Element Method (FEM) and on the Circuits Theory (Independent Currents Method) to analyze the inter-bar currents on the rotor of cage induction motors. The Multi-Slice Technique is used to consider the skewing effect. Three conditions are considered: one inter-bar resistance, two inter-bar resistances and three inter-bar resistances. The results show the distribution of currents in the rotor bars, short-circuit rings and transversal resistances at a given time. The fundamental component of the inter-bar and surrounding bar currents are shown to help understanding the phenomenon.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Lucian Lupşa-Tătaru

Although of a great extent in time, the research works directed at studying transients in synchronous generators have not yet provided fully sufficient comparative studies in respect to sudden short circuits of the machine. The present paper puts forward novel and comprehensive process models for dynamic simulation of short circuit faults of initially unloaded synchronous generators, using the generalizedd-q-0 mathematical model as starting point in derivation. Distinct from the time-domain analysis, the technique proposed here allows an effective comparative overview by employing a specialized procedure to perform repeated time-domain simulations accompanied by peak values recording for the various circumstances. The time consuming matrix numerical inversion at each step of integration, usually performed when selecting currents as state variables, is eliminated by advancing the process models in a convenient split matrix form that allows the symbolic processing. Also, the computational efficiency is being increased by introducing a set of auxiliary variables common to different state equations. The models derivation is carried out without altering the structural equations of the generalizedd-q-0 mathematical model of synchronous generators whilst the simulation results are both compared and discussed in detail.


2013 ◽  
Vol 433-435 ◽  
pp. 705-708 ◽  
Author(s):  
Shuo Ding ◽  
Xiao Heng Chang ◽  
Qing Hui Wu

In fault diagnosis of three-phase induction motors, traditional methods usually fail because of the complex system of three-phase induction motors. Short circuit is a very common stator fault in all the faults of three-phase induction motors. Probabilistic neural network is a kind of artificial neural network which is widely used due to its fast training and simple structure. In this paper, the diagnosis method based on probabilistic neural network is proposed to deal with stator short circuits. First, the principle and structure of probabilistic neural network is studied in this paper. Second, the method of fault setting and fault feature extraction of three-phase induction motors is proposed on the basis of the fault diagnosis of stator short circuits. Then the establishment of the diagnosis model based on probabilistic neural network is illustrated with details. At last, training and simulation tests are done for the model. And simulation results show that this method is very practical with its high accuracy and fast speed.


2020 ◽  
Vol 5 (1) ◽  
pp. 123-133
Author(s):  
Grzegorz Tarchała ◽  
Marcin Wolkiewicz ◽  
Mateusz Krzysztofiak

AbstractThis paper deals with a novel diagnostic method for finding the stator winding short-circuit damage of induction motor drives. The proposed method is based on a new, simple idea of applying a modified, triple Park transform instead of using a computationally demanding on-line Fast Fourier Transform (FFT) analysis. The diagnostic method is based on the analysis of current and reference voltage vector components, which are the part of the Direct Field Oriented Control structure. The proposed method is verified experimentally using tests results. Further, the influence of speed, load torque and the parameters of PI regulators on the performance of the proposed diagnostic method are also discussed.


2020 ◽  
Vol 23 (2) ◽  
pp. 59-64
Author(s):  
E. NIEMTSEV ◽  

The article determines that the main faults in induction motors are damage to the stator and rotor windings, which occur due to changes and distortions in the shape and amplitude of the supply voltage, technological overheating of the windings, mechanical damage. These factors lead to accelerated wear of the insulation of the windings, structural components of the motors, increased values of power losses and the occurrence of pre-emergency and emergency situations. Among the specified diagnostic parameters of engine operation it is possible to consider separately existence of damages of cores of a short-circuited rotor which timely diagnostics demands removal of the engine in repair and will allow to avoid emergency situations with induction motors. To diagnose the control of the rotor rods are quite diverse: determining the amplitude-frequency spectrum of stator currents, detecting the presence of current ripples in an artificial short circuit in the stator winding, the use of diagnostic curves, the selection of appropriate harmonic oscillations in the vibration of the rotor. To reduce or eliminate the negative impact of various factors on the course of technological processes, the best approach at present is the use of tools and measures to diagnose the operation of engines using modeling methods. Based on the model of an induction motor with a short-circuited rotor created in the MATHCAD software environment, graphical dependences were obtained that reflect the change of the main parameters of the induction motor operation and allow to analyze their change during the modulation time. The presence of pulsations of regime parameters and aperiodic components caused by transients was shown. Studies of the process of starting the engine without load and under load showed an increase in start-up time, and the pulsating nature of the studied parameters is observed only in the initial section. The engine start time also increases in the presence of damaged rods in the short-circuited rotor. The pulsating nature of the main diagnostic parameters can be used as a criterion for determining the presence of damage in the short-circuited winding of the rotor of an induction motor.


Author(s):  
Youssef Ahmed Mobarak ◽  
Mahmoud M. Hussein

The occurrence of voltage instabilities or voltage collapses depend on the duration of the persistence of the fault and on the type of fault, some faults lead to voltage instabilities, others lead to voltage collapse. Evaluation of fault durations causing occurrence of voltage instabilities is the main goal of this paper. This paper searches for the effect of nodes short circuit levels NSCL and its duration periods initiation of voltage instability, with lagging and leading load power factors at certain loads buses. In this paper, the power system dynamic simulation program is developed for dynamic analysis of voltage stability. This paper is concerned with the fault duration which lead to the occurrence of voltage instability phenomena due to NSCL. The fault which lead to voltage instability is found to be short circuits at certain nodes cleared without any variation in the transmission system elements, i.e. the post-fault conditions will be the same as the pre-fault conditions. Models for loads considered in this study are induction motors with three different shaft mechanical loads, constant impedance CZ loads, constant current CI loads and constant power CP loads are used, as they depict the behavior of most power system loads. The influence of the transmission network impedances, which are nearly the inverse of the NSCL, on the fault duration which lead to the occurrence of voltage instabilities are studied and evaluated using various load representations.<strong><em></em></strong>


2020 ◽  
Vol 24 (3) ◽  
pp. 417-424
Author(s):  
A.I. Abdullateef ◽  
O.S. Fagbolagun ◽  
M.F. Sanusi ◽  
M.F. Akorede ◽  
M.A. Afolayan

Induction motors are the backbone of the industries because they are easy to operate, rugged, economical and reliable. However, they are subjected to stator’s faults which damage the windings and consequently lead to machine failure and loss of revenue. Early detection and  classification of these faults are important for the effective operation of induction motors. Stators faults detection and classification based on  wavelet Transform was carried out in this study. The feature extraction of the acquired data was achieved using lifting decomposition and reconstruction scheme while Euclidean distance of the Wavelet energy was used to classify the faults. The Wavelet energies increased for all three conditions monitored, normal condition, inter-turn fault and phase-to-phase fault, as the frequency band of the signal decreases from D1 to A3. The deviations in the Euclidean Distance of the current of the Wavelet energy obtained for the phase-to-phase faults are 99.1909, 99.8239 and 87.9750 for phases A and B, A and C, B and C respectively. While that of the inter-turn faults in phases A, B and C are 77.5572, 61.6389 and 62.5581 respectively. Based on the Euclidean distances of the faults, Df and normal current signals, three classification points were set: K1 = 0.60 x 102, K2 = 0.80 x 102 and K3 = 1.00 x 102. For K2 ≥ Df ≥ K1 inter-turn faults is identified and for K3 ≥ Df ≥ K2 phase to phase fault identified. This will improve the induction motors stator’s fault diagnosis. Keywords: induction motor, stator fault classification, data acquisition system, Discrete Wavelet Transform


2021 ◽  
Vol 5 (5 (113)) ◽  
pp. 21-29
Author(s):  
Oleg Gubarevych ◽  
Sergey Goolak ◽  
Olena Daki ◽  
Yuriy Yakusevych

This paper has proposed and substantiated the application of an additional diagnostic parameter for assessing the state of stator windings of induction motors during operation. The dependences of the values of phase shifts between phase currents and phase voltages have been obtained. These dependences showed that when an inter-turn short circuit occurs in the stator windings, the phase shifts are the same for all phases of the motor. That has made it possible to obtain the dependence of the change in phase shift on the change in the engine shaft rotation frequency. This study's result has established the dependence of the rates of change of the phase angle on the engine shaft rotation frequency for both one and two damaged phases with varying degrees of damage. When analyzing these dependences, it was found that with an increase in the number of damaged phases of the electric motor, the linear section of the dependences decreases. In addition, with an increase in the degree of phase damage, the angle of inclination of the linear sections of the characteristics decreases. That has made it possible to determine an additional parameter for diagnosing the place and degree of an inter-turn short circuit of the windings in an induction motor with a squirrel-cage rotor. The values of the additional parameter, termed by this paper's authors as a "phase criterion" can be used to assess the condition and degree of damage to the stator winding of induction motors. The values of the phase criteria for various types of damage were: when phase A is damaged by 90 %, ξ=0.634, (deg)2/(rpm)2; when phase A is damaged by 80 %, ξ=0.393, (deg)2/(rpm)2; when phase A is damaged by 80 % and phase B is damaged by 90 %, ξ=0.25, (deg)2/(rpm)2; when phase A is damaged by 80 % and phase B is damaged by 90 %, ξ=0.173, (deg)2/(rpm)2. The results of this research could be used to select an effective method for diagnosing an inter-turn short circuit in the stator winding when building a diagnostic system for induction motors as part of drives of transport equipment


Sign in / Sign up

Export Citation Format

Share Document